Huang Erwei, Rui Ning, Rosales Rina, Liu Ping, Rodriguez José A
Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.
J Am Chem Soc. 2023 Apr 5. doi: 10.1021/jacs.3c01980.
Enzymatic systems achieve the catalytic conversion of methane at room temperature under mild conditions. In this study, varying thermodynamic and kinetic parameters, we show that the reforming of methane by water (MWR, CH + HO → CO + 3H) and the water-gas shift reaction (WGS, CO + HO → H + CO), two essential processes to integrate fossil fuels toward a H energy loop, can be achieved on ZrO/Cu(111) catalysts near room temperature. Measurements of ambient-pressure X-ray photoelectron spectroscopy and mass spectrometry, combined with density functional calculations and kinetic Monte Carlo simulations, were used to study the behavior of the inverse oxide/metal catalysts. The superior performance is associated with a unique zirconia-copper interface, where multifunctional sites involving zirconium, oxygen, and copper work coordinatively to dissociate methane and water at 300 K and move forward the MWR and WGS processes.
酶系统在温和条件下于室温实现甲烷的催化转化。在本研究中,通过改变热力学和动力学参数,我们表明,水与甲烷重整反应(MWR,CH₄ + H₂O → CO + 3H₂)以及水煤气变换反应(WGS,CO + H₂O → H₂ + CO₂),这两个将化石燃料整合到氢能源循环中的关键过程,在接近室温的ZrO₂/Cu(111)催化剂上即可实现。利用常压X射线光电子能谱和质谱测量,并结合密度泛函计算和动力学蒙特卡罗模拟,研究了反向氧化物/金属催化剂的行为。其卓越性能与独特的氧化锆 - 铜界面有关,在该界面处,涉及锆、氧和铜的多功能位点协同作用,在300 K下使甲烷和水离解,并推动MWR和WGS过程。