Suppr超能文献

用于域适应的引导式判别与相关子空间学习

Guided Discrimination and Correlation Subspace Learning for Domain Adaptation.

作者信息

Lu Yuwu, Wong Wai Keung, Zeng Biqing, Lai Zhihui, Li Xuelong

出版信息

IEEE Trans Image Process. 2023;32:2017-2032. doi: 10.1109/TIP.2023.3261758.

Abstract

As a branch of transfer learning, domain adaptation leverages useful knowledge from a source domain to a target domain for solving target tasks. Most of the existing domain adaptation methods focus on how to diminish the conditional distribution shift and learn invariant features between different domains. However, two important factors are overlooked by most existing methods: 1) the transferred features should be not only domain invariant but also discriminative and correlated, and 2) negative transfer should be avoided as much as possible for the target tasks. To fully consider these factors in domain adaptation, we propose a guided discrimination and correlation subspace learning (GDCSL) method for cross-domain image classification. GDCSL considers the domain-invariant, category-discriminative, and correlation learning of data. Specifically, GDCSL introduces the discriminative information associated with the source and target data by minimizing the intraclass scatter and maximizing the interclass distance. By designing a new correlation term, GDCSL extracts the most correlated features from the source and target domains for image classification. The global structure of the data can be preserved in GDCSL because the target samples are represented by the source samples. To avoid negative transfer issues, we use a sample reweighting method to detect target samples with different confidence levels. A semi-supervised extension of GDCSL (Semi-GDCSL) is also proposed, and a novel label selection scheme is introduced to ensure the correction of the target pseudo-labels. Comprehensive and extensive experiments are conducted on several cross-domain data benchmarks. The experimental results verify the effectiveness of the proposed methods over state-of-the-art domain adaptation methods.

摘要

作为迁移学习的一个分支,域适应利用源域中的有用知识到目标域来解决目标任务。现有的大多数域适应方法都集中在如何减少条件分布偏移以及学习不同域之间的不变特征。然而,大多数现有方法忽略了两个重要因素:1)转移的特征不仅应该是域不变的,而且应该是有判别力的和相关的;2)对于目标任务应尽可能避免负迁移。为了在域适应中充分考虑这些因素,我们提出了一种用于跨域图像分类的引导判别和相关子空间学习(GDCSL)方法。GDCSL考虑了数据在域不变、类别判别和相关性方面的学习。具体来说,GDCSL通过最小化类内散度和最大化类间距离来引入与源数据和目标数据相关的判别信息。通过设计一个新的相关项,GDCSL从源域和目标域中提取最相关的特征用于图像分类。由于目标样本由源样本表示,所以数据的全局结构可以在GDCSL中得以保留。为了避免负迁移问题,我们使用一种样本重新加权方法来检测具有不同置信水平的目标样本。还提出了GDCSL的半监督扩展(Semi - GDCSL),并引入了一种新颖的标签选择方案以确保目标伪标签的正确性。在几个跨域数据基准上进行了全面而广泛的实验。实验结果验证了所提出方法相对于现有最先进的域适应方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验