Suppr超能文献

使用数据自适应空间滤波减少被动空化成像伪影。

Passive Cavitation Imaging Artifact Reduction Using Data-Adaptive Spatial Filtering.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jun;70(6):498-509. doi: 10.1109/TUFFC.2023.3264832. Epub 2023 May 25.

Abstract

Passive cavitation imaging (PCI) with a clinical diagnostic array results in poor axial localization of bubble activity due to the size of the point spread function (PSF). The objective of this study was to determine if data-adaptive spatial filtering improved PCI beamforming performance relative to standard frequency-domain delay, sum, and integrate (DSI) or robust Capon beamforming (RCB). The overall goal was to improve source localization and image quality without sacrificing computation time. Spatial filtering was achieved by applying a pixel-based mask to DSI- or RCB-beamformed images. The masks were derived from DSI, RCB, or phase or amplitude coherence factors (ACFs) using both receiver operating characteristic (ROC) and precision-recall (PR) curve analyses. Spatially filtered passive cavitation images were formed from cavitation emissions based on two simulated sources densities and four source distribution patterns mimicking cavitation emissions induced by an EkoSonic catheter. Beamforming performance was assessed via binary classifier metrics. The difference in sensitivity, specificity, and area under the ROC curve (AUROC) differed by no more than 11% across all algorithms for both source densities and all source patterns. The computational time required for each of the three spatially filtered DSIs was two orders of magnitude less than that required for time-domain RCB and thus this data-adaptive spatial filtering strategy for PCI beamforming is preferable given the similar binary classification performance.

摘要

临床诊断探头的被动声空化成像(PCI)由于点扩散函数(PSF)的大小,导致空化活动的轴向定位效果较差。本研究旨在确定数据自适应空间滤波是否可以提高 PCI 波束形成性能,与标准频域延迟、求和与积分(DSI)或稳健 Capon 波束形成(RCB)相比。总体目标是在不牺牲计算时间的情况下提高源定位和图像质量。通过将基于像素的掩模应用于 DSI 或 RCB 波束形成图像来实现空间滤波。掩模源自 DSI、RCB 或相位或幅度相干因子(ACF),使用接收器操作特性(ROC)和精度-召回(PR)曲线分析。基于两个模拟源密度和四个源分布模式,从空化发射形成了具有空间滤波的被动空化图像,这些模式模拟了 EkoSonic 导管引起的空化发射。通过二进制分类器指标评估波束形成性能。对于两种源密度和所有源模式,所有算法之间的灵敏度、特异性和 ROC 曲线下面积(AUROC)的差异不超过 11%。三种空间滤波 DSI 中的每一种所需的计算时间都比时域 RCB 少两个数量级,因此考虑到类似的二进制分类性能,这种用于 PCI 波束形成的数据自适应空间滤波策略更可取。

相似文献

1
Passive Cavitation Imaging Artifact Reduction Using Data-Adaptive Spatial Filtering.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jun;70(6):498-509. doi: 10.1109/TUFFC.2023.3264832. Epub 2023 May 25.
3
Frequency-sum beamforming for passive cavitation imaging.
J Acoust Soc Am. 2018 Jul;144(1):198. doi: 10.1121/1.5045328.
6
Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming.
Med Phys. 2023 Apr;50(4):2323-2335. doi: 10.1002/mp.16248. Epub 2023 Feb 7.
7
Passive Acoustic Mapping Using Data-Adaptive Beamforming Based on Higher Order Statistics.
IEEE Trans Med Imaging. 2018 Dec;37(12):2582-2592. doi: 10.1109/TMI.2018.2843291. Epub 2018 Jul 2.
8
3-D Passive Cavitation Imaging Using Adaptive Beamforming and Matrix Array Transducer With Random Apodization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Feb;71(2):238-254. doi: 10.1109/TUFFC.2023.3344165. Epub 2024 Jan 26.
10
Passive cavitation mapping using dual apodization with cross-correlation in ultrasound therapy monitoring.
Ultrason Sonochem. 2019 Jun;54:18-31. doi: 10.1016/j.ultsonch.2019.02.020. Epub 2019 Feb 22.

引用本文的文献

2
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
3
Quantifying the Effect of Acoustic Parameters on Temporal and Spatial Cavitation Activity: Gauging Cavitation Dose.
Ultrasound Med Biol. 2023 Nov;49(11):2388-2397. doi: 10.1016/j.ultrasmedbio.2023.08.002. Epub 2023 Aug 28.
4
Contrast-Enhanced Imaging of Histotripsy Bubble Clouds Using Chirp-Coded Excitation and Volterra Filtering.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):989-998. doi: 10.1109/TUFFC.2023.3289918. Epub 2023 Aug 29.

本文引用的文献

1
Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom.
Ultrasound Med Biol. 2021 Mar;47(3):693-709. doi: 10.1016/j.ultrasmedbio.2020.10.010. Epub 2021 Jan 7.
2
Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part I: Theory and Validation Through Simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1184-1197. doi: 10.1109/TUFFC.2020.3035696. Epub 2021 Mar 26.
3
Dual-Array Passive Acoustic Mapping for Cavitation Imaging With Enhanced 2-D Resolution.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):647-663. doi: 10.1109/TUFFC.2020.3019573. Epub 2021 Feb 25.
4
Ultrafast three-dimensional microbubble imaging predicts tissue damage volume distributions during nonthermal brain ablation.
Theranostics. 2020 Jun 1;10(16):7211-7230. doi: 10.7150/thno.47281. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验