Ma Mingcan, Xia Changqun, Xie Chenxi, Chen Xiaowu, Li Jia
IEEE Trans Image Process. 2023;32:1026-1038. doi: 10.1109/TIP.2022.3232209. Epub 2023 Feb 3.
Salient Object Detection has boomed in recent years and achieved impressive performance on regular-scale targets. However, existing methods encounter performance bottlenecks in processing objects with scale variation, especially extremely large- or small-scale objects with asymmetric segmentation requirements, since they are inefficient in obtaining more comprehensive receptive fields. With this issue in mind, this paper proposes a framework named BBRF for Boosting Broader Receptive Fields, which includes a Bilateral Extreme Stripping (BES) encoder, a Dynamic Complementary Attention Module (DCAM) and a Switch-Path Decoder (SPD) with a new boosting loss under the guidance of Loop Compensation Strategy (LCS). Specifically, we rethink the characteristics of the bilateral networks, and construct a BES encoder that separates semantics and details in an extreme way so as to get the broader receptive fields and obtain the ability to perceive extreme large- or small-scale objects. Then, the bilateral features generated by the proposed BES encoder can be dynamically filtered by the newly proposed DCAM. This module interactively provides spacial-wise and channel-wise dynamic attention weights for the semantic and detail branches of our BES encoder. Furthermore, we subsequently propose a Loop Compensation Strategy to boost the scale-specific features of multiple decision paths in SPD. These decision paths form a feature loop chain, which creates mutually compensating features under the supervision of boosting loss. Experiments on five benchmark datasets demonstrate that the proposed BBRF has a great advantage to cope with scale variation and can reduce the Mean Absolute Error over 20% compared with the state-of-the-art methods.
显著目标检测近年来蓬勃发展,并在常规尺度目标上取得了令人瞩目的性能。然而,现有方法在处理具有尺度变化的目标时遇到性能瓶颈,特别是对于具有不对称分割要求的极大或极小尺度目标,因为它们在获取更全面的感受野方面效率低下。考虑到这个问题,本文提出了一个名为BBRF(Boosting Broader Receptive Fields)的框架,它包括一个双边极端剥离(Bilateral Extreme Stripping,BES)编码器、一个动态互补注意力模块(Dynamic Complementary Attention Module,DCAM)和一个在循环补偿策略(Loop Compensation Strategy,LCS)指导下带有新的增强损失的切换路径解码器(Switch-Path Decoder,SPD)。具体来说,我们重新思考双边网络的特性,并构建一个以极端方式分离语义和细节的BES编码器,以便获得更广泛的感受野并具备感知极大或极小尺度目标的能力。然后,所提出的BES编码器生成的双边特征可以由新提出的DCAM动态过滤。该模块为我们的BES编码器的语义和细节分支交互式地提供空间和通道维度的动态注意力权重。此外,我们随后提出了一种循环补偿策略,以增强SPD中多个决策路径的尺度特定特征。这些决策路径形成一个特征循环链,在增强损失的监督下创建相互补偿的特征。在五个基准数据集上的实验表明,所提出的BBRF在应对尺度变化方面具有很大优势,与现有最先进方法相比,平均绝对误差可降低20%以上。