Suppr超能文献

公式差异为自然有机物的实验室间研究建立了数据库。

Formulae Differences Commence a Database for Interlaboratory Studies of Natural Organic Matter.

机构信息

Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.

出版信息

Environ Sci Technol. 2023 Apr 18;57(15):6238-6247. doi: 10.1021/acs.est.2c08002. Epub 2023 Apr 5.

Abstract

Direct comparison of high-resolution mass spectrometry (HRMS) data acquired with different instrumentation or parameters remains problematic as the derived lists of molecular species via HRMS, even for the same sample, appear distinct. This inconsistency is caused by inherent inaccuracies associated with instrumental limitations and sample conditions. Hence, experimental data may not reflect a corresponding sample. We propose a method that classifies HRMS data based on the differences in the number of elements between each pair of molecular formulae within the formulae list to preserve the essence of the given sample. The novel metric, formulae difference chains expected length (FDCEL), allowed for comparing and classifying samples measured by different instruments. We also demonstrate a web application and a prototype for a uniform database for HRMS data serving as a benchmark for future biogeochemical and environmental applications. FDCEL metric was successfully employed for both spectrum quality control and examination of samples of various nature.

摘要

直接比较不同仪器或参数采集的高分辨率质谱(HRMS)数据仍然存在问题,因为即使对于相同的样品,通过 HRMS 获得的分子种类列表也显得不同。这种不一致性是由仪器限制和样品条件相关的固有不准确性引起的。因此,实验数据可能无法反映相应的样品。我们提出了一种基于每个分子公式列表中分子公式对之间元素数量差异进行 HRMS 数据分类的方法,以保留给定样品的本质。新的度量标准,公式差异链预期长度(FDCEL),允许比较和分类不同仪器测量的样品。我们还展示了一个用于 HRMS 数据的网络应用程序和统一数据库原型,作为未来生物地球化学和环境应用的基准。FDCEL 度量标准成功地用于光谱质量控制和各种性质的样品检查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验