Suppr超能文献

基于卷积神经网络的 MRI 图像脑肿瘤分类。

Classification of Brain Tumours in MRI Images using a Convolutional Neural Network.

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.

University Institute of Technology, Himachal Pradesh University, Shimla, 171005, India.

出版信息

Curr Med Imaging. 2024;20:e270323214998. doi: 10.2174/1573405620666230327124902.

Abstract

INTRODUCTION

Recent advances in deep learning have aided the well-being business in Medical Imaging of numerous disorders like brain tumours, a serious malignancy caused by unregulated and aberrant cell portioning. The most frequent and widely used machine learning algorithm for visual learning and image identification is CNN.

METHODS

In this article, the convolutional neural network (CNN) technique is used. Augmentation of data and processing of images is used to classify scan imagery of brain MRI as malignant or benign. The performance of the proposed CNN model is compared with pre-trained models: VGG-16, ResNet-50, and Inceptionv3 using the technique which is transfer learning.

RESULTS

Even though the experiment was conducted on a relatively limited dataset, the experimental results reveal that the suggested scratched CNN model accuracy achieved is 94 percent, VGG-16 was extremely effective and had a very low complexity rate with an accuracy of 90 percent, whereas ResNet- 50 reached 86 percent and Inception v3 obtained 64 percent accuracy.

CONCLUSION

When compared to previous pre-trained models, the suggested model consumes significantly less processing resources and achieves significantly higher accuracy outcomes and reduction in losses.

摘要

简介

深度学习的最新进展为医学成像领域的众多疾病带来了福音,如脑肿瘤,这是一种由不受控制和异常的细胞分裂引起的严重恶性肿瘤。最常见和广泛使用的用于视觉学习和图像识别的机器学习算法是卷积神经网络(CNN)。

方法

在本文中,使用了卷积神经网络(CNN)技术。通过对数据进行扩充和对图像进行处理,将脑 MRI 扫描图像分类为恶性或良性。使用迁移学习技术将提出的 CNN 模型与预训练模型(VGG-16、ResNet-50 和 Inceptionv3)的性能进行了比较。

结果

尽管该实验是在相对有限的数据集上进行的,但实验结果表明,建议的划痕 CNN 模型的准确率达到了 94%,VGG-16 非常有效,具有极低的复杂度率,准确率为 90%,而 ResNet-50 达到 86%,Inception v3 达到 64%的准确率。

结论

与以前的预训练模型相比,建议的模型消耗的处理资源明显更少,同时获得了更高的准确率和更低的损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验