Suppr超能文献

基于多次 EEG 数据的测试-重测可靠性评估脑源定位方法。

Evaluation of Brain Source Localization Methods Based on Test-Retest Reliability With Multiple Session EEG Data.

出版信息

IEEE Trans Biomed Eng. 2023 Jul;70(7):2080-2090. doi: 10.1109/TBME.2023.3235377. Epub 2023 Jun 19.

Abstract

OBJECTIVE

Various EEG source localization methods have been proposed for functional brain research. The evaluation and comparison of these methods are usually based on simulated data but not real EEG data, as the ground truth of source localization is unknown. In this study, we aim to evaluate source localization methods quantitatively under the real situation.

METHODS

We examined the test-retest reliability of the source signals reconstructed from a public six-session EEG data of 16 subjects performing face recognition tasks by five mainstream methods, including weighted minimum norm estimation (WMN), dynamical Statistical Parametric Mapping (dSPM), Standardized LOw Resolution brain Electromagnetic TomogrAphy (sLORETA), dipole modeling and linearly constrained minimum variance (LCMV) beamformers. All methods were evaluated in terms of peak localization reliability and amplitude reliability of source signals.

RESULTS

In the two brain regions responsible for static face recognition, all methods have promising peak localization reliability, with WMN showing the smallest peak dipole distance between session pairs. The spatial stability of source localization in the familiar face condition is better than those in the unfamiliar face and the scrambled face conditions in the face recognition areas in the right hemisphere. In addition, the test-retest reliability of source amplitude by all methods is good to excellent under the familiar face condition.

CONCLUSION

Stable and reliable results for source localization can be obtained in the presence of evident EEG effects. Due to different levels of a priori knowledge, different source localization methods have different applicable scenarios.

SIGNIFICANCE

These findings provide new evidence for the validity of source localization analysis and a new perspective for the evaluation of source localization methods on real EEG data.

摘要

目的

已有多种 EEG 源定位方法被提出用于功能脑研究。这些方法的评估和比较通常基于模拟数据,而不是真实的 EEG 数据,因为源定位的真实情况是未知的。在本研究中,我们旨在真实情况下定量评估源定位方法。

方法

我们通过五种主流方法(加权最小范数估计(WMN)、动态统计参数映射(dSPM)、标准化低分辨率脑电磁层析成像(sLORETA)、偶极子建模和线性约束最小方差(LCMV)波束形成器),检验了 16 名被试在执行面孔识别任务时公共的六次 EEG 数据中重建的源信号的测试-重测可靠性。所有方法都从源信号的峰值定位可靠性和幅度可靠性两个方面进行了评估。

结果

在负责静态面孔识别的两个脑区,所有方法的峰值定位可靠性都很有前景,WMN 方法显示出了最小的偶极子对会话间距离。在右半球的面孔识别区域,在熟悉面孔条件下,源定位的空间稳定性优于不熟悉面孔和随机面孔条件。此外,在熟悉面孔条件下,所有方法的源振幅的测试-重测可靠性均为良好至优秀。

结论

在存在明显 EEG 效应的情况下,可获得稳定且可靠的源定位结果。由于先验知识的水平不同,不同的源定位方法具有不同的适用场景。

意义

这些发现为源定位分析的有效性提供了新的证据,并为在真实 EEG 数据上评估源定位方法提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验