School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia.
J Colloid Interface Sci. 2023 Jul 15;642:246-254. doi: 10.1016/j.jcis.2023.03.116. Epub 2023 Mar 22.
Solid-state electrolytes have been widely investigated for lithium batteries since they provide a high degree of safety. However, their low ionic conductivity and substantial growth of lithium dendrites hamper their commercial applications. Garnet-type LiLaZrTaO (LLZTO) is one of the most promising active fillers to advance the performance of the solid polymer electrolyte. Nevertheless, their performance is still limited due to their large interfacial resistance. Herein, we embedded the amorphous LiO (LO) into LLZTO particles via the quenching process and successfully achieved an interfacial layer of LiO around LLZTO particles (LLZTO@LO). Amorphous LiO acts as a binder and showed an excellent affinity for Li ions which promotes their fast transference. Moreover, the stable and dense interfacial LiO layer enhances interfacial contact and suppresses the lithium dendrite growth during the long operation cycling process. The PEO/10LLZTO@2LO solid composite polymer electrolyte (SCPE) showed the highest ionic conductivity of 3.2 × 10 S cm at 40 °C as compared to pristine LLZTO-based SCPE. Moreover, the Li│(PEO/10LLZTO@2LO) │Li symmetric cell showed a stable and smooth long lifespan up to 1100 h at 40 °C. Furthermore, the LiFePO//Li full battery with PEO/10LLZTO@2LO SCPE demonstrated stable cycling performance for 400 cycles. These results constitute a significant step toward the practical application of solid-state lithium metal batteries (SS-LMBs).
固态电解质因其具有高安全性而被广泛研究用于锂电池。然而,其较低的离子电导率和大量锂枝晶的生长阻碍了它们的商业应用。石榴石型 LiLaZrTaO(LLZTO)是提高固体聚合物电解质性能最有前途的活性填料之一。然而,由于它们的界面电阻较大,其性能仍然受到限制。在此,我们通过淬火工艺将非晶态 LiO(LO)嵌入 LLZTO 颗粒中,并成功地在 LLZTO 颗粒周围形成了一层 LiO 界面层(LLZTO@LO)。非晶态 LiO 作为一种粘结剂,对锂离子具有优异的亲和力,促进了锂离子的快速迁移。此外,稳定致密的界面 LiO 层增强了界面接触,并抑制了在长期运行循环过程中锂枝晶的生长。与原始基于 LLZTO 的 SCPE 相比,PEO/10LLZTO@2LO 固体复合聚合物电解质(SCPE)表现出最高的离子电导率 3.2×10 S cm 在 40°C。此外,Li│(PEO/10LLZTO@2LO)│Li 对称电池在 40°C 下可稳定、平稳地运行长达 1100 小时。此外,具有 PEO/10LLZTO@2LO SCPE 的 LiFePO//Li 全电池表现出稳定的循环性能,可进行 400 次循环。这些结果是朝着实用化的固态锂金属电池(SS-LMB)迈出的重要一步。