Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
Department of Pharmacy and Pharmacology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
J Control Release. 2023 May;357:287-298. doi: 10.1016/j.jconrel.2023.03.058. Epub 2023 Apr 5.
Diffuse midline glioma H3K27-altered (DMG) is an aggressive, inoperable, predominantly paediatric brain tumour. Treatment strategies are limited, resulting in a median survival of only 11 months. Currently, radiotherapy (RT), often combined with temozolomide, is considered the standard of care but remains palliative, highlighting the urgency for new therapies. Radiosensitisation by olaparib, an inhibitor of PARP1 and subsequently PAR-synthesis, is a promising treatment option. We assessed whether PARP1 inhibition enhances radiosensitivity in vitro and in vivo following focused ultrasound mediated blood-brain barrier opening (FUS-BBBO).
Effects of PARP1 inhibition were evaluated in vitro using viability, clonogenic, and neurosphere assays. In vivo olaparib extravasation and pharmacokinetic profiling following FUS-BBBO was measured by LC-MS/MS. Survival benefit of FUS-BBBO combined with olaparib and RT was assessed using a patient-derived xenograft (PDX) DMG mouse model.
Treatment with olaparib in combination with radiation delayed tumour cell proliferation in vitro through the reduction of PAR. Prolonged exposure of low olaparib concentration was more efficient in delaying cell growth than short exposure of high concentration. FUS-BBBO increased olaparib bioavailability in the pons by 5.36-fold without observable adverse effects. A Cmax of 54.09 μM in blood and 1.39 μM in the pontine region was achieved following administration of 100 mg/kg olaparib. Although RT combined with FUS-BBBO mediated olaparib extravasation delayed local tumour growth, survival benefits were not observed in an in vivo DMG PDX model.
Olaparib effectively radiosensitises DMG cells in vitro and reduces primary tumour growth in vivo when combined with RT. Further studies are needed to investigate the therapeutic benefit of olaparib in suitable preclinical PDX models.
弥漫性中线脑胶质瘤 H3K27 改变型(DMG)是一种侵袭性的、无法手术的、主要发生于儿童的脑肿瘤。治疗策略有限,导致中位生存期仅为 11 个月。目前,放疗(RT)常与替莫唑胺联合应用,被认为是标准治疗方法,但仍属于姑息性治疗,这凸显了开发新疗法的紧迫性。PARP1 抑制剂奥拉帕利通过增强聚(ADP-核糖)聚合酶 1(PARP1)和随后的 PAR 合成的放射增敏作用,是一种很有前途的治疗选择。我们评估了在聚焦超声介导的血脑屏障开放(FUS-BBBO)后,PARP1 抑制是否能增强体外和体内的放射敏感性。
在体外使用细胞活力、集落形成和神经球测定法评估 PARP1 抑制的效果。通过 LC-MS/MS 测量 FUS-BBBO 后奥拉帕利的外渗和药代动力学特征。使用患者来源的异种移植(PDX)DMG 小鼠模型评估 FUS-BBBO 联合奥拉帕利和 RT 的生存获益。
奥拉帕利联合放疗可通过减少 PAR 来延迟体外肿瘤细胞的增殖。与高浓度的短时间暴露相比,低浓度的奥拉帕利长时间暴露更能有效地延缓细胞生长。FUS-BBBO 将奥拉帕利在桥脑中的生物利用度增加了 5.36 倍,而没有观察到不良反应。给予 100mg/kg 奥拉帕利后,血液中的 Cmax 为 54.09µM,桥脑区域的 Cmax 为 1.39µM。尽管 RT 联合 FUS-BBBO 介导的奥拉帕利外渗延迟了局部肿瘤生长,但在体内 DMG PDX 模型中未观察到生存获益。
奥拉帕利在体外有效放射增敏 DMG 细胞,并与 RT 联合减少体内原发性肿瘤生长。需要进一步的研究来调查奥拉帕利在合适的临床前 PDX 模型中的治疗益处。