Suppr超能文献

潜在可手术非小细胞肺癌患者经支气管内超声引导经支气管针吸活检术纵隔转移及其检测的预测模型:一项前瞻性研究。

Prediction Models for Mediastinal Metastasis and Its Detection by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Potentially Operable Non-Small Cell Lung Cancer: A Prospective Study.

机构信息

Division of Pulmonology, National Cancer Center, Goyang, Gyeonggi, Korea.

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea.

出版信息

Chest. 2023 Sep;164(3):770-784. doi: 10.1016/j.chest.2023.03.041. Epub 2023 Apr 3.

Abstract

BACKGROUND

Prediction models for mediastinal metastasis and its detection by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) have not been developed using a prospective cohort of potentially operable patients with non-small cell lung cancer (NSCLC).

RESEARCH QUESTION

Can mediastinal metastasis and its detection by EBUS-TBNA be predicted with prediction models in NSCLC?

STUDY DESIGN AND METHODS

For the prospective development cohort, 589 potentially operable patients with NSCLC were evaluated (July 2016-June 2019) from five Korean teaching hospitals. Mediastinal staging was performed using EBUS-TBNA (with or without the transesophageal approach). Surgery was performed for patients without clinical N (cN) 2-3 disease by endoscopic staging. The prediction model for lung cancer staging-mediastinal metastasis (PLUS-M) and a model for mediastinal metastasis detection by EBUS-TBNA (PLUS-E) were developed using multivariable logistic regression analyses. Validation was performed using a retrospective cohort (n = 309) from a different period (June 2019-August 2021).

RESULTS

The prevalence of mediastinal metastasis diagnosed by EBUS-TBNA or surgery and the sensitivity of EBUS-TBNA in the development cohort were 35.3% and 87.0%, respectively. In PLUS-M, younger age (< 60 years and 60-70 years compared with ≥ 70 years), nonsquamous histology (adenocarcinoma and others), central tumor location, tumor size (> 3-5 cm), cN1 or cN2-3 stage by CT, and cN1 or cN2-3 stage by PET-CT were significant risk factors for N2-3 disease. Areas under the receiver operating characteristic curve (AUCs) for PLUS-M and PLUS-E were 0.876 (95% CI, 0.845-0.906) and 0.889 (95% CI, 0.859-0.918), respectively. Model fit was good (PLUS-M: Hosmer-Lemeshow P = .658, Brier score = 0.129; PLUS-E: Hosmer-Lemeshow P = .569, Brier score = 0.118). In the validation cohort, PLUS-M (AUC, 0.859 [95% CI, 0.817-0.902], Hosmer-Lemeshow P = .609, Brier score = 0.144) and PLUS-E (AUC, 0.900 [95% CI, 0.865-0.936], Hosmer-Lemeshow P = .361, Brier score = 0.112) showed good discrimination ability and calibration.

INTERPRETATION

PLUS-M and PLUS-E can be used effectively for decision-making for invasive mediastinal staging in NSCLC.

TRIAL REGISTRY

ClinicalTrials.gov; No.: NCT02991924; URL: www.

CLINICALTRIALS

gov.

摘要

背景

针对非小细胞肺癌(NSCLC)患者,尚未使用潜在可手术患者的前瞻性队列开发用于预测纵隔转移及其经支气管内超声引导针吸活检(EBUS-TBNA)检测的模型。

研究问题

能否使用 NSCLC 的预测模型预测纵隔转移及其通过 EBUS-TBNA 的检测?

研究设计和方法

在前瞻性开发队列中,评估了来自 5 家韩国教学医院的 589 名潜在可手术 NSCLC 患者(2016 年 7 月至 2019 年 6 月)。使用 EBUS-TBNA(联合或不联合经食管方法)进行纵隔分期。对于内镜分期无临床 N(cN)2-3 疾病的患者进行手术。使用多变量逻辑回归分析开发了肺癌分期-纵隔转移预测模型(PLUS-M)和 EBUS-TBNA 检测纵隔转移的模型(PLUS-E)。使用不同时期(2019 年 6 月至 2021 年 8 月)的回顾性队列(n=309)进行验证。

结果

EBUS-TBNA 或手术诊断的纵隔转移患病率以及 EBUS-TBNA 的敏感性分别为 35.3%和 87.0%。在 PLUS-M 中,年龄较轻(<60 岁和 60-70 岁比≥70 岁)、非鳞状组织学(腺癌和其他)、中央肿瘤位置、肿瘤大小(>3-5cm)、CT 上的 cN1 或 cN2-3 期和 PET-CT 上的 cN1 或 cN2-3 期是 N2-3 疾病的显著危险因素。PLUS-M 和 PLUS-E 的受试者工作特征曲线(ROC)下面积(AUC)分别为 0.876(95%CI,0.845-0.906)和 0.889(95%CI,0.859-0.918)。模型拟合良好(PLUS-M:Hosmer-Lemeshow P=0.658,Brier 评分=0.129;PLUS-E:Hosmer-Lemeshow P=0.569,Brier 评分=0.118)。在验证队列中,PLUS-M(AUC,0.859[95%CI,0.817-0.902],Hosmer-Lemeshow P=0.609,Brier 评分=0.144)和 PLUS-E(AUC,0.900[95%CI,0.865-0.936],Hosmer-Lemeshow P=0.361,Brier 评分=0.112)显示出良好的区分能力和校准度。

解释

PLUS-M 和 PLUS-E 可有效用于 NSCLC 侵袭性纵隔分期的决策。

试验注册

ClinicalTrials.gov;编号:NCT02991924;网址:www.clinicaltrials.gov。

临床试验

无。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验