Suppr超能文献

人工智能和机器学习在预测血液透析患者透析期间低血压中的应用:一项系统综述

Artificial Intelligence and Machine Learning in Predicting Intradialytic Hypotension in Hemodialysis Patients: A Systematic Review.

作者信息

Chaudhry Taha Zahid, Yadav Mansi, Bokhari Syed Faqeer Hussain, Fatimah Syeda Rubab, Rehman Abdur, Kamran Muhammad, Asim Aiman, Elhefyan Mohamed, Yousif Osman

机构信息

Internal Medicine, Holy Family Hospital, Rawalpindi, PAK.

Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND.

出版信息

Cureus. 2024 Jul 25;16(7):e65334. doi: 10.7759/cureus.65334. eCollection 2024 Jul.

Abstract

Intradialytic hypotension (IDH) is a common and potentially life-threatening complication in hemodialysis patients. Traditional preventive measures have shown limited effectiveness in reducing IDH incidence. This systematic review evaluates the existing literature on the use of artificial intelligence (AI) and machine learning (ML) models for predicting IDH in hemodialysis patients. A comprehensive literature search identified five eligible studies employing diverse AI/ML algorithms, including artificial neural networks, decision trees, support vector machines, XGBoost, random forests, and LightGBM. These models utilized various features such as patient demographics, clinical data, laboratory findings, and dialysis-related parameters. The studies reported promising results, with several models achieving high prediction accuracies, sensitivities, specificities, and area under the receiver operating characteristic curve values for predicting IDH. However, limitations include variations in study populations, retrospective designs, and the need for prospective validation. Future research should focus on multicenter prospective studies, assessing clinical utility, and integrating interpretable AI/ML models into clinical decision support systems.

摘要

透析中低血压(IDH)是血液透析患者常见且可能危及生命的并发症。传统的预防措施在降低IDH发生率方面效果有限。本系统评价评估了关于使用人工智能(AI)和机器学习(ML)模型预测血液透析患者IDH的现有文献。全面的文献检索确定了五项符合条件的研究,这些研究采用了多种AI/ML算法,包括人工神经网络、决策树、支持向量机、XGBoost、随机森林和LightGBM。这些模型利用了各种特征,如患者人口统计学、临床数据、实验室检查结果和透析相关参数。研究报告了有前景的结果,有几个模型在预测IDH方面达到了较高的预测准确性、敏感性、特异性和受试者工作特征曲线下面积值。然而,局限性包括研究人群的差异、回顾性设计以及前瞻性验证的必要性。未来的研究应侧重于多中心前瞻性研究、评估临床效用以及将可解释的AI/ML模型整合到临床决策支持系统中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e97/11344373/8b01f599d910/cureus-0016-00000065334-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验