School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA.
CNRS, Ecole Polytechnique, Institut Photovoltaïque d'Ile-de-France UMR 9006, 18 Boulevard Thomas Gobert, 91120, Palaiseau, France.
Sci Rep. 2023 Apr 5;13(1):5601. doi: 10.1038/s41598-023-32125-2.
Under continuous-wave laser excitation in a lattice-matched InGaAs/InGaAsP multi-quantum-well (MQW) structure, the carrier temperature extracted from photoluminescence rises faster for 405 nm compared with 980 nm excitation, as the injected carrier density increases. Ensemble Monte Carlo simulation of the carrier dynamics in the MQW system shows that this carrier temperature rise is dominated by nonequilibrium LO phonon effects, with the Pauli exclusion having a significant effect at high carrier densities. Further, we find a significant fraction of carriers reside in the satellite L-valleys for 405 nm excitation due to strong intervalley transfer, leading to a cooler steady-state electron temperature in the central valley compared with the case when intervalley transfer is excluded from the model. Good agreement between experiment and simulation has been shown, and detailed analysis has been presented. This study expands our knowledge of the dynamics of the hot carrier population in semiconductors, which can be applied to further limit energy loss in solar cells.
在晶格匹配的 InGaAs/InGaAsP 多量子阱 (MQW) 结构中,连续波激光激发下,随着注入载流子密度的增加,从光致发光中提取的载流子温度对于 405nm 激发比 980nm 激发上升得更快。在 MQW 系统中的载流子动力学的整体蒙特卡罗模拟表明,这种载流子温度上升主要由非平衡 LO 声子效应主导,在高载流子密度下,泡利不相容原理有显著影响。此外,我们发现由于强谷间转移,对于 405nm 激发,载流子的很大一部分位于卫星 L 谷,导致与排除模型中的谷间转移的情况相比,中央谷中的电子温度更低。实验和模拟之间已经显示出良好的一致性,并且进行了详细的分析。这项研究扩展了我们对半导体中热载流子群体动力学的认识,这可应用于进一步限制太阳能电池的能量损失。