Suppr超能文献

Ag-S 型量子点与超原子纳米催化剂:一个硫原子调控的脱羧基自由基级联反应。

Ag-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction.

机构信息

Department of Chemistry, Central University of Punjab, Bathinda 151401, India.

Department of Physics, Central University of Punjab, Bathinda 151401, India.

出版信息

Inorg Chem. 2023 Apr 17;62(15):6092-6101. doi: 10.1021/acs.inorgchem.3c00070. Epub 2023 Apr 6.

Abstract

The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, AgS(SBu) (denoted as AgS-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with α-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom AgS(SBu) (denoted as AgS) with identical surface anatomy and size, but without a central S atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (H and P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of AgS-S. The BET results expose the total active surface area in supporting a single e transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of AgS-S leads to higher charge transfer from AgS to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst.

摘要

在定量产率下制备高核银纳米簇仍然是独特的,它们在有机反应催化中的潜在应用仍未得到开发。在这里,我们合成了一种基于量子点的催化剂[AgS(SBu)] (PF)(表示为 AgS-S),产率优异,可在温和的反应条件下通过肉桂酰胺与α-氧羧酸的脱羧基自由基级联反应以 92%的产率直接合成具有药用价值的 3,4-二氢喹啉酮。相比之下,具有相同表面结构和尺寸但核心中没有中心 S 原子的超原子[AgS(SBu)] (PF)(表示为 AgS)在短时间内以更高的产率(95%)表现出更高的反应性。多种表征技术(单晶 X 射线衍射、核磁共振(H 和 P)、电喷雾电离质谱、能量色散 X 射线光谱、Brunauer-Emmett-Teller (BET)、傅里叶变换红外光谱、X 射线光电子能谱和热重分析)证实了 AgS-S 的形成。BET 结果揭示了支持单个电子转移反应机制的总有效表面面积。密度泛函理论表明,AgS-S 中心 S 原子的缺失导致 AgS 向反应物的电荷转移增加,加速脱羧过程,并将催化性能与纳米催化剂的结构相关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验