Department of Chemistry, Central University of Punjab, Bathinda 151401, India.
Department of Physics, Central University of Punjab, Bathinda 151401, India.
Inorg Chem. 2023 Apr 17;62(15):6092-6101. doi: 10.1021/acs.inorgchem.3c00070. Epub 2023 Apr 6.
The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, AgS(SBu) (denoted as AgS-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with α-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom AgS(SBu) (denoted as AgS) with identical surface anatomy and size, but without a central S atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (H and P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of AgS-S. The BET results expose the total active surface area in supporting a single e transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of AgS-S leads to higher charge transfer from AgS to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst.
在定量产率下制备高核银纳米簇仍然是独特的,它们在有机反应催化中的潜在应用仍未得到开发。在这里,我们合成了一种基于量子点的催化剂[AgS(SBu)] (PF)(表示为 AgS-S),产率优异,可在温和的反应条件下通过肉桂酰胺与α-氧羧酸的脱羧基自由基级联反应以 92%的产率直接合成具有药用价值的 3,4-二氢喹啉酮。相比之下,具有相同表面结构和尺寸但核心中没有中心 S 原子的超原子[AgS(SBu)] (PF)(表示为 AgS)在短时间内以更高的产率(95%)表现出更高的反应性。多种表征技术(单晶 X 射线衍射、核磁共振(H 和 P)、电喷雾电离质谱、能量色散 X 射线光谱、Brunauer-Emmett-Teller (BET)、傅里叶变换红外光谱、X 射线光电子能谱和热重分析)证实了 AgS-S 的形成。BET 结果揭示了支持单个电子转移反应机制的总有效表面面积。密度泛函理论表明,AgS-S 中心 S 原子的缺失导致 AgS 向反应物的电荷转移增加,加速脱羧过程,并将催化性能与纳米催化剂的结构相关联。