IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9374-9392. doi: 10.1109/TPAMI.2023.3238516. Epub 2023 Jun 30.
Convolution on 3D point clouds is widely researched yet far from perfect in geometric deep learning. The traditional wisdom of convolution characterises feature correspondences indistinguishably among 3D points, arising an intrinsic limitation of poor distinctive feature learning. In this article, we propose Adaptive Graph Convolution (AGConv) for wide applications of point cloud analysis. AGConv generates adaptive kernels for points according to their dynamically learned features. Compared with the solution of using fixed/isotropic kernels, AGConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse relations between points from different semantic parts. Unlike the popular attentional weight schemes, AGConv implements the adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive evaluations clearly show that our method outperforms state-of-the-arts of point cloud classification and segmentation on various benchmark datasets. Meanwhile, AGConv can flexibly serve more point cloud analysis approaches to boost their performance. To validate its flexibility and effectiveness, we explore AGConv-based paradigms of completion, denoising, upsampling, registration and circle extraction, which are comparable or even superior to their competitors.
三维点云中的卷积在几何深度学习中得到了广泛的研究,但还远未完善。卷积的传统思想是将特征对应关系不加区分地应用于三维点,从而产生了特征学习能力差的固有局限性。在本文中,我们提出了自适应图卷积(AGConv),以广泛应用于点云分析。AGConv 根据点的动态学习特征为点生成自适应核。与使用固定/各向同性核的解决方案相比,AGConv 提高了点云卷积的灵活性,有效地、精确地捕捉来自不同语义部分的点之间的各种关系。与流行的注意力权重方案不同,AGConv 在卷积操作内部实现了适应性,而不是简单地为邻域点分配不同的权重。广泛的评估清楚地表明,我们的方法在各种基准数据集上的点云分类和分割方面优于最先进的方法。同时,AGConv 可以灵活地为更多的点云分析方法提供支持,以提高它们的性能。为了验证其灵活性和有效性,我们探索了基于 AGConv 的补全、去噪、上采样、配准和圆提取范例,它们在性能上可与竞争对手相媲美,甚至更优。