Suppr超能文献

基于嵌入引导布局的图探索

Graph Exploration With Embedding-Guided Layouts.

作者信息

Shen Leixian, Tai Zhiwei, Shen Enya, Wang Jianmin

出版信息

IEEE Trans Vis Comput Graph. 2024 Jul;30(7):3693-3708. doi: 10.1109/TVCG.2023.3238909. Epub 2024 Jun 27.

Abstract

Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g., minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this article, we propose a flexible embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.

摘要

节点链接图被广泛用于可视化图形。大多数图形布局算法仅将图形拓扑用于美学目标(例如,最小化节点遮挡和边交叉)或使用节点属性用于探索目标(例如,保留可见社区)。现有的结合这两种观点的混合方法仍然受到各种生成限制(例如,有限的输入类型以及需要手动调整和图形的先验知识)以及美学和探索目标之间的不平衡的困扰。在本文中,我们提出了一种基于灵活嵌入的图形探索管道,以充分利用图形拓扑和节点属性的优势。首先,我们利用属性图的嵌入算法将这两种观点编码到潜在空间中。然后,我们提出了一种嵌入驱动的图形布局算法GEGraph,它可以实现具有更好社区保留的美学布局,以支持对图形结构的轻松解释。接下来,基于生成的图形布局和从嵌入向量中提取的见解扩展图形探索。通过示例说明,我们构建了一种具有焦点+上下文交互的布局保留聚合方法和一种具有多种接近策略的相关节点搜索方法。最后,我们进行定量和定性评估、用户研究以及两个案例研究来验证我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验