Suppr超能文献

持久同调引导的力导向图布局

Persistent Homology Guided Force-Directed Graph Layouts.

作者信息

Suh Ashley, Hajij Mustafa, Wang Bei, Scheidegger Carlos, Rosen Paul

出版信息

IEEE Trans Vis Comput Graph. 2020 Jan;26(1):697-707. doi: 10.1109/TVCG.2019.2934802. Epub 2019 Aug 20.

Abstract

Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets.

摘要

图表常用于编码实体之间的关系,但其抽象性使其难以分析。节点链接图是绘制图表的常用方式,而力导向布局提供了一种灵活的节点排列方法,该方法利用局部关系来揭示图表的全局形状。然而,不相关结构的混乱和重叠会导致图表可视化令人困惑。本文利用无向图的持久同调特征作为力导向布局交互式操作的派生信息。我们首先讨论如何从加权和未加权的无向图中高效提取0维持久同调特征。然后我们引入用于操纵力导向图布局的交互式持久条形码。特别是,用户添加和删除由持久同调特征生成的收缩力和排斥力,最终选择最能改善布局的持久同调特征集。最后,我们在各种合成数据集和真实数据集上展示了我们方法的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验