Suppr超能文献

用于多视图二元聚类的图协作自动编码器哈希

Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering.

作者信息

Wang Huibing, Yao Mingze, Jiang Guangqi, Mi Zetian, Fu Xianping

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):10121-10133. doi: 10.1109/TNNLS.2023.3239033. Epub 2024 Jul 8.

Abstract

Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.

摘要

随着大规模数据的爆炸式增长,无监督哈希方法引起了广泛关注,它可以通过学习紧凑的二进制代码极大地减少存储和计算量。现有的无监督哈希方法试图利用样本中的有价值信息,但没有考虑未标记样本的局部几何结构。此外,基于自动编码器的哈希旨在最小化输入数据和二进制代码之间的重建损失,这忽略了多源数据的潜在一致性和互补性。为了解决上述问题,我们提出了一种基于自动编码器的多视图二进制聚类哈希算法,该算法动态学习具有低秩约束的亲和图,并采用自动编码器与亲和图之间的协同学习来学习统一的二进制代码,称为用于多视图二进制聚类的图协作自动编码器(GCAE)哈希。具体来说,我们提出了一种具有低秩约束的多视图亲和图学习模型,该模型可以从多视图数据中挖掘潜在的几何信息。然后,我们设计了一种编码器 - 解码器范式来协作多个亲和图,从而可以有效地学习统一的二进制代码。值得注意的是,我们对二进制代码施加去相关和代码平衡约束以减少量化误差。最后,我们使用交替迭代优化方案来获得多视图聚类结果。在五个公共数据集上提供了大量实验结果,以揭示该算法的有效性及其相对于其他现有最先进方法的优越性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验