Suppr超能文献

用于真实世界人脸超分辨率的半循环生成对抗网络

Semi-Cycled Generative Adversarial Networks for Real-World Face Super-Resolution.

作者信息

Hou Hao, Xu Jun, Hou Yingkun, Hu Xiaotao, Wei Benzheng, Shen Dinggang

出版信息

IEEE Trans Image Process. 2023;32:1184-1199. doi: 10.1109/TIP.2023.3240845. Epub 2023 Feb 13.

Abstract

Real-world face super-resolution (SR) is a highly ill-posed image restoration task. The fully-cycled Cycle-GAN architecture is widely employed to achieve promising performance on face SR, but is prone to produce artifacts upon challenging cases in real-world scenarios, since joint participation in the same degradation branch will impact final performance due to huge domain gap between real-world and synthetic LR ones obtained by generators. To better exploit the powerful generative capability of GAN for real-world face SR, in this paper, we establish two independent degradation branches in the forward and backward cycle-consistent reconstruction processes, respectively, while the two processes share the same restoration branch. Our Semi-Cycled Generative Adversarial Networks (SCGAN) is able to alleviate the adverse effects of the domain gap between the real-world LR face images and the synthetic LR ones, and to achieve accurate and robust face SR performance by the shared restoration branch regularized by both the forward and backward cycle-consistent learning processes. Experiments on two synthetic and two real-world datasets demonstrate that, our SCGAN outperforms the state-of-the-art methods on recovering the face structures/details and quantitative metrics for real-world face SR. The code will be publicly released at https://github.com/HaoHou-98/SCGAN.

摘要

真实世界的面部超分辨率(SR)是一项严重不适定的图像恢复任务。全循环的Cycle-GAN架构被广泛用于在面部SR上取得良好性能,但在真实世界场景中的具有挑战性的情况下容易产生伪影,因为在同一退化分支中的联合参与会由于生成器获得的真实世界和合成低分辨率(LR)图像之间的巨大域差距而影响最终性能。为了更好地利用GAN强大的生成能力来进行真实世界的面部SR,在本文中,我们分别在前向和后向循环一致重建过程中建立两个独立的退化分支,而这两个过程共享同一个恢复分支。我们的半循环生成对抗网络(SCGAN)能够减轻真实世界LR面部图像和合成LR图像之间域差距的不利影响,并通过由前向和后向循环一致学习过程正则化的共享恢复分支来实现准确且稳健的面部SR性能。在两个合成数据集和两个真实世界数据集上的实验表明,我们的SCGAN在恢复面部结构/细节以及真实世界面部SR的定量指标方面优于现有方法。代码将在https://github.com/HaoHou-98/SCGAN上公开发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验