Ma Cheng, Rao Yongming, Lu Jiwen, Zhou Jie
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7898-7911. doi: 10.1109/TPAMI.2021.3114428. Epub 2022 Oct 4.
Structures matter in single image super-resolution (SISR). Benefiting from generative adversarial networks (GANs), recent studies have promoted the development of SISR by recovering photo-realistic images. However, there are still undesired structural distortions in the recovered images. In this paper, we propose a structure-preserving super-resolution (SPSR) method to alleviate the above issue while maintaining the merits of GAN-based methods to generate perceptual-pleasant details. First, we propose SPSR with gradient guidance (SPSR-G) by exploiting gradient maps of images to guide the recovery in two aspects. On the one hand, we restore high-resolution gradient maps by a gradient branch to provide additional structure priors for the SR process. On the other hand, we propose a gradient loss to impose a second-order restriction on the super-resolved images, which helps generative networks concentrate more on geometric structures. Second, since the gradient maps are handcrafted and may only be able to capture limited aspects of structural information, we further extend SPSR-G by introducing a learnable neural structure extractor (NSE) to unearth richer local structures and provide stronger supervision for SR. We propose two self-supervised structure learning methods, contrastive prediction and solving jigsaw puzzles, to train the NSEs. Our methods are model-agnostic, which can be potentially used for off-the-shelf SR networks. Experimental results on five benchmark datasets show that the proposed methods outperform state-of-the-art perceptual-driven SR methods under LPIPS, PSNR, and SSIM metrics. Visual results demonstrate the superiority of our methods in restoring structures while generating natural SR images. Code is available at https://github.com/Maclory/SPSR.
结构在单图像超分辨率(SISR)中至关重要。受益于生成对抗网络(GAN),最近的研究通过恢复逼真的图像推动了SISR的发展。然而,恢复的图像中仍然存在不期望的结构失真。在本文中,我们提出了一种结构保留超分辨率(SPSR)方法,以缓解上述问题,同时保持基于GAN的方法生成令人愉悦的感知细节的优点。首先,我们通过利用图像的梯度图在两个方面指导恢复,提出了带梯度引导的SPSR(SPSR-G)。一方面,我们通过梯度分支恢复高分辨率梯度图,为超分辨率过程提供额外的结构先验。另一方面,我们提出了一种梯度损失,对超分辨率图像施加二阶约束,这有助于生成网络更多地关注几何结构。其次,由于梯度图是人工制作的,可能只能捕捉有限的结构信息方面,我们通过引入可学习的神经结构提取器(NSE)进一步扩展了SPSR-G,以挖掘更丰富的局部结构,并为超分辨率提供更强的监督。我们提出了两种自监督结构学习方法,对比预测和解决拼图问题,来训练NSE。我们的方法与模型无关,可潜在地用于现成的超分辨率网络。在五个基准数据集上的实验结果表明,所提出的方法在LPIPS、PSNR和SSIM指标下优于现有的感知驱动超分辨率方法。视觉结果证明了我们的方法在恢复结构同时生成自然超分辨率图像方面的优越性。代码可在https://github.com/Maclory/SPSR获取。