Suppr超能文献

LSNet:用于在RGB-热图像中检测显著物体的轻量级空间增强网络。

LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images.

作者信息

Zhou Wujie, Zhu Yun, Lei Jingsheng, Yang Rongwang, Yu Lu

出版信息

IEEE Trans Image Process. 2023;32:1329-1340. doi: 10.1109/TIP.2023.3242775. Epub 2023 Feb 27.

Abstract

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.

摘要

大多数用于RGB(红-绿-蓝)-热显著目标检测(SOD)的最新方法涉及多个浮点运算且有大量参数,导致推理速度缓慢,尤其是在普通处理器上,这阻碍了它们在移动设备上的实际应用部署。为了解决这些问题,我们提出了一种轻量级空间增强网络(LSNet),用于高效的RGB-热SOD,它采用轻量级的MobileNetV2主干来替代传统主干(如VGG、ResNet)。为了使用轻量级主干改进特征提取,我们提出了一种边界增强算法,该算法优化预测的显著图并减少低维特征中的信息坍缩。该算法基于预测的显著图生成边界图,而不会产生额外的计算或复杂度。由于多模态处理对于高性能SOD至关重要,我们采用注意力特征蒸馏和选择,并提出语义和几何迁移学习来增强主干,同时在测试期间不增加复杂度。实验结果表明,与14种RGB-热SOD方法相比,所提出的LSNet在三个数据集上实现了最优性能,同时提高了浮点运算次数(1.025G)、参数数量(5.39M)、模型大小(22.1MB)和推理速度(对于PyTorch,批大小为1,英特尔i5-7500处理器时为9.95帧/秒;对于PyTorch,批大小为1,NVIDIA TITAN V图形处理器时为93.53帧/秒;对于PyTorch,批大小为20,图形处理器时为936.68帧/秒;对于TensorRT,批大小为1时为538.01帧/秒;对于TensorRT/FP16,批大小为1时为903.01帧/秒)。代码和结果可从https://github.com/zyrant/LSNet的链接获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验