Vinck Martin, Uran Cem, Spyropoulos Georgios, Onorato Irene, Broggini Ana Clara, Schneider Marius, Canales-Johnson Andres
Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
Neuron. 2023 Apr 5;111(7):987-1002. doi: 10.1016/j.neuron.2023.03.015.
What mechanisms underlie flexible inter-areal communication in the cortex? We consider four mechanisms for temporal coordination and their contributions to communication: (1) Oscillatory synchronization (communication-through-coherence); (2) communication-through-resonance; (3) non-linear integration; and (4) linear signal transmission (coherence-through-communication). We discuss major challenges for communication-through-coherence based on layer- and cell-type-specific analyses of spike phase-locking, heterogeneity of dynamics across networks and states, and computational models for selective communication. We argue that resonance and non-linear integration are viable alternative mechanisms that facilitate computation and selective communication in recurrent networks. Finally, we consider communication in relation to cortical hierarchy and critically examine the hypothesis that feedforward and feedback communication use fast (gamma) and slow (alpha/beta) frequencies, respectively. Instead, we propose that feedforward propagation of prediction errors relies on the non-linear amplification of aperiodic transients, whereas gamma and beta rhythms represent rhythmic equilibrium states that facilitate sustained and efficient information encoding and amplification of short-range feedback via resonance.
皮层中灵活的区域间通信的潜在机制是什么?我们考虑了四种时间协调机制及其对通信的贡献:(1)振荡同步(通过相干性进行通信);(2)通过共振进行通信;(3)非线性整合;以及(4)线性信号传输(通过通信实现相干性)。我们基于对尖峰相位锁定的层特异性和细胞类型特异性分析、网络和状态间动力学的异质性以及选择性通信的计算模型,讨论了通过相干性进行通信所面临的主要挑战。我们认为共振和非线性整合是可行的替代机制,它们有助于在循环网络中进行计算和选择性通信。最后,我们考虑与皮层层次结构相关的通信,并批判性地审视前馈和反馈通信分别使用快速(γ)和慢速(α/β)频率的假设。相反,我们提出预测误差的前馈传播依赖于非周期性瞬变的非线性放大,而γ和β节律代表有节奏的平衡状态,它们通过共振促进持续且高效的信息编码以及短程反馈的放大。