Suppr超能文献

用于大规模激光雷达点云配准的稀疏到密集匹配网络

Sparse-to-Dense Matching Network for Large-Scale LiDAR Point Cloud Registration.

作者信息

Lu Fan, Chen Guang, Liu Yinlong, Zhan Yibing, Li Zhijun, Tao Dacheng, Jiang Changjun

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):11270-11282. doi: 10.1109/TPAMI.2023.3265531. Epub 2023 Aug 7.

Abstract

Point cloud registration is a fundamental problem in 3D computer vision. Previous learning-based methods for LiDAR point cloud registration can be categorized into two schemes: dense-to-dense matching methods and sparse-to-sparse matching methods. However, for large-scale outdoor LiDAR point clouds, solving dense point correspondences is time-consuming, whereas sparse keypoint matching easily suffers from keypoint detection error. In this paper, we propose SDMNet, a novel Sparse-to-Dense Matching Network for large-scale outdoor LiDAR point cloud registration. Specifically, SDMNet performs registration in two sequential stages: sparse matching stage and local-dense matching stage. In the sparse matching stage, we sample a set of sparse points from the source point cloud and then match them to the dense target point cloud using a spatial consistency enhanced soft matching network and a robust outlier rejection module. Furthermore, a novel neighborhood matching module is developed to incorporate local neighborhood consensus, significantly improving performance. The local-dense matching stage is followed for fine-grained performance, where dense correspondences are efficiently obtained by performing point matching in local spatial neighborhoods of high-confidence sparse correspondences. Extensive experiments on three large-scale outdoor LiDAR point cloud datasets demonstrate that the proposed SDMNet achieves state-of-the-art performance with high efficiency.

摘要

点云配准是三维计算机视觉中的一个基本问题。以前基于学习的激光雷达点云配准方法可分为两种方案:稠密到稠密匹配方法和稀疏到稀疏匹配方法。然而,对于大规模户外激光雷达点云,求解稠密点对应关系耗时,而稀疏关键点匹配容易受到关键点检测误差的影响。在本文中,我们提出了SDMNet,一种用于大规模户外激光雷达点云配准的新型稀疏到稠密匹配网络。具体而言,SDMNet分两个连续阶段进行配准:稀疏匹配阶段和局部稠密匹配阶段。在稀疏匹配阶段,我们从源点云中采样一组稀疏点,然后使用空间一致性增强软匹配网络和强大的离群值拒绝模块将它们与稠密目标点云进行匹配。此外,还开发了一种新颖的邻域匹配模块以纳入局部邻域一致性,显著提高了性能。随后进行局部稠密匹配阶段以实现细粒度性能,通过在高置信度稀疏对应关系的局部空间邻域中执行点匹配来高效获得稠密对应关系。在三个大规模户外激光雷达点云数据集上进行的大量实验表明,所提出的SDMNet以高效率实现了当前最优性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验