Suppr超能文献

基于自定步长集成的半监督最优传输的跨院脓毒症早期检测。

Cross-Hospital Sepsis Early Detection via Semi-Supervised Optimal Transport With Self-Paced Ensemble.

出版信息

IEEE J Biomed Health Inform. 2023 Jun;27(6):3049-3060. doi: 10.1109/JBHI.2023.3253208. Epub 2023 Jun 5.

Abstract

Leveraging machine learning techniques for Sepsis early detection and diagnosis has attracted increasing interest in recent years. However, most existing methods require a large amount of labeled training data, which may not be available for a target hospital that deploys a new Sepsis detection system. More seriously, as treated patients are diversified between hospitals, directly applying a model trained on other hospitals may not achieve good performance for the target hospital. To address this issue, we propose a novel semi-supervised transfer learning framework based on optimal transport theory and self-paced ensemble for Sepsis early detection, called SPSSOT, which can efficiently transfer knowledge from the source hospital (with rich labeled data) to the target hospital (with scarce labeled data). Specifically, SPSSOT incorporates a new optimal transport-based semi-supervised domain adaptation component that can effectively exploit all the unlabeled data in the target hospital. Moreover, self-paced ensemble is adapted in SPSSOT to alleviate the class imbalance issue during transfer learning. In a nutshell, SPSSOT is an end-to-end transfer learning method that automatically selects suitable samples from two domains (hospitals) respectively and aligns their feature spaces. Extensive experiments on two open clinical datasets, MIMIC-III and Challenge, demonstrate that SPSSOT outperforms state-of-the-art transfer learning methods by improving 1-3% of AUC.

摘要

近年来,利用机器学习技术进行脓毒症早期检测和诊断引起了越来越多的关注。然而,大多数现有方法需要大量的标记训练数据,而对于部署新的脓毒症检测系统的目标医院来说,可能无法获得这些数据。更严重的是,由于治疗患者在医院之间存在差异,直接应用在其他医院训练的模型可能无法在目标医院中取得良好的性能。为了解决这个问题,我们提出了一种新颖的基于最优传输理论和自步集成的半监督迁移学习框架,用于脓毒症早期检测,称为 SPSSOT,它可以有效地将知识从源医院(有丰富的标记数据)转移到目标医院(有很少的标记数据)。具体来说,SPSSOT 结合了一种新的基于最优传输的半监督域自适应组件,可以有效地利用目标医院中所有未标记的数据。此外,自步集成在 SPSSOT 中得到了应用,以减轻迁移学习过程中的类别不平衡问题。总之,SPSSOT 是一种端到端的迁移学习方法,它可以自动从两个域(医院)中分别选择合适的样本,并对齐它们的特征空间。在两个公开的临床数据集 MIMIC-III 和 Challenge 上进行的广泛实验表明,SPSSOT 通过提高 1-3%的 AUC 来优于最先进的迁移学习方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验