Suppr超能文献

用于不完整多视图聚类的自引导部分图传播

Self-Guided Partial Graph Propagation for Incomplete Multiview Clustering.

作者信息

Liu Cheng, Li Rui, Wu Si, Che Hangjun, Jiang Dazhi, Yu Zhiwen, Wong Hau-San

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10803-10816. doi: 10.1109/TNNLS.2023.3244021. Epub 2024 Aug 5.

Abstract

In this work, we study a more realistic challenging scenario in multiview clustering (MVC), referred to as incomplete MVC (IMVC) where some instances in certain views are missing. The key to IMVC is how to adequately exploit complementary and consistency information under the incompleteness of data. However, most existing methods address the incompleteness problem at the instance level and they require sufficient information to perform data recovery. In this work, we develop a new approach to facilitate IMVC based on the graph propagation perspective. Specifically, a partial graph is used to describe the similarity of samples for incomplete views, such that the issue of missing instances can be translated into the missing entries of the partial graph. In this way, a common graph can be adaptively learned to self-guide the propagation process by exploiting the consistency information, and the propagated graph of each view is in turn used to refine the common self-guided graph in an iterative manner. Thus, the associated missing entries can be inferred through graph propagation by exploiting the consistency information across all views. On the other hand, existing approaches focus on the consistency structure only, and the complementary information has not been sufficiently exploited due to the data incompleteness issue. By contrast, under the proposed graph propagation framework, an exclusive regularization term can be naturally adopted to exploit the complementary information in our method. Extensive experiments demonstrate the effectiveness of the proposed method in comparison with state-of-the-art methods. The source code of our method is available at the https://github.com/CLiu272/TNNLS-PGP.

摘要

在这项工作中,我们研究了多视图聚类(MVC)中一个更现实的具有挑战性的场景,即不完全多视图聚类(IMVC),其中某些视图中的一些实例是缺失的。IMVC的关键在于如何在数据不完整的情况下充分利用互补和一致性信息。然而,大多数现有方法是在实例层面解决不完整问题,并且它们需要足够的信息来执行数据恢复。在这项工作中,我们基于图传播的视角开发了一种新方法来促进IMVC。具体来说,使用一个部分图来描述不完整视图中样本的相似性,这样缺失实例的问题就可以转化为部分图中的缺失条目。通过这种方式,可以自适应地学习一个公共图,通过利用一致性信息来自我引导传播过程,并且每个视图的传播图又依次用于以迭代方式细化公共自引导图。因此,可以通过利用所有视图之间的一致性信息,通过图传播来推断相关的缺失条目。另一方面,现有方法仅关注一致性结构,由于数据不完整问题,互补信息没有得到充分利用。相比之下,在所提出的图传播框架下,我们的方法可以自然地采用一个排他正则化项来利用互补信息。大量实验表明,与现有方法相比,所提出的方法是有效的。我们方法的源代码可在https://github.com/CLiu272/TNNLS-PGP获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验