Suppr超能文献

基于数据驱动的拒绝服务攻击下非线性多智能体系统协同弹性学习方法

Data-Driven-Based Cooperative Resilient Learning Method for Nonlinear MASs Under DoS Attacks.

作者信息

Deng Chao, Jin Xiao-Zheng, Wu Zheng-Guang, Che Wei-Wei

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12107-12116. doi: 10.1109/TNNLS.2023.3252080. Epub 2024 Sep 3.

Abstract

In this article, we consider the cooperative tracking problem for a class of nonlinear multiagent systems (MASs) with unknown dynamics under denial-of-service (DoS) attacks. To solve such a problem, a hierarchical cooperative resilient learning method, which involves a distributed resilient observer and a decentralized learning controller, is introduced in this article. Due to the existence of communication layers in the hierarchical control architecture, it may lead to communication delays and DoS attacks. Motivated by this consideration, a resilient model-free adaptive control (MFAC) method is developed to withstand the influence of communication delays and DoS attacks. First, a virtual reference signal is designed for each agent to estimate the time-varying reference signal under DoS attacks. To facilitate the tracking of each agent, the virtual reference signal is discretized. Then, a decentralized MFAC algorithm is designed for each agent such that each agent can track the reference signal by only using the obtained local information. Finally, a simulation example is proposed to verify the effectiveness of the developed method.

摘要

在本文中,我们考虑一类在拒绝服务(DoS)攻击下具有未知动态的非线性多智能体系统(MASs)的协同跟踪问题。为解决此类问题,本文引入了一种分层协同弹性学习方法,该方法涉及一个分布式弹性观测器和一个分散式学习控制器。由于分层控制架构中存在通信层,可能会导致通信延迟和DoS攻击。出于这种考虑,开发了一种弹性无模型自适应控制(MFAC)方法来抵御通信延迟和DoS攻击的影响。首先,为每个智能体设计一个虚拟参考信号,以估计DoS攻击下的时变参考信号。为便于每个智能体进行跟踪,对虚拟参考信号进行离散化处理。然后,为每个智能体设计一种分散式MFAC算法,使得每个智能体仅通过使用所获得的局部信息就能跟踪参考信号。最后,给出一个仿真示例来验证所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验