College of Material Sciences and Engineering, Beijing University of Technology, Beijing, 100124, China.
Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.
Adv Mater. 2023 Jul;35(28):e2300691. doi: 10.1002/adma.202300691. Epub 2023 May 28.
Novel metal halide perovskite is proven to be a promising optoelectronic material. However, fabricating microscopic perovskite devices is still challenging because the perovskite is soluble with the photoresist, which conflicts with conventional microfabrication technology. The size of presently reported perovskite devices is about 50 µm. Limited by the large size of perovskite optoelectronic devices, they cannot be readily adopted in the fields of imaging, display, etc. Herein a universal microscopic patterned doping method is proposed, which can realize microscale perovskite devices. Rather than by the conventional doping method, in this study the local Fermi level of perovskite is modulated by the redistributing intrinsic ion defects via a polling voltage. A satisfactorily stable polarized ion distribution can be achieved by optimization of the perovskite material and polling voltage, resulting in ultrafast (40 µs), self-powered microscale (2 µm) photodiodes. This work sheds light on a route to fabricate integrated perovskite optoelectronic chips.
新型卤化金属钙钛矿被证实是一种很有前途的光电材料。然而,由于钙钛矿可溶于光致抗蚀剂,与传统的微制造技术相冲突,因此制造微观钙钛矿器件仍然具有挑战性。目前报道的钙钛矿器件的尺寸约为 50µm。受限于钙钛矿光电器件的大型化,它们无法在成像、显示等领域得到广泛应用。本文提出了一种通用的微观图案掺杂方法,可以实现微尺度的钙钛矿器件。与传统的掺杂方法不同,在这项研究中,通过施加偏置电压,钙钛矿中的本征离子缺陷重新分布来调节局部费米能级。通过优化钙钛矿材料和偏置电压,可以实现稳定的极化离子分布,从而得到超快(40µs)、自供电的微尺度(2µm)光电二极管。这项工作为制造集成钙钛矿光电芯片开辟了一条新途径。