School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Key Laboratory of Aerosol Chemistry & Physics and State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Science, Xi'an, China.
Sci Total Environ. 2023 Jul 10;881:163369. doi: 10.1016/j.scitotenv.2023.163369. Epub 2023 Apr 7.
High surface ozone (O) levels affect human and environmental health. The Fenwei Plain (FWP), one of the critical regions for China's "Blue Sky Protection Campaign", has reported severe O pollution. This study investigates the spatiotemporal properties and the causes of O pollution over the FWP using high-resolution data from the TROPOspheric Monitoring Instrument (TROPOMI) from 2019 to 2021. This study characterizes spatial and temporal variations in O concentration by linking O columns and surface monitoring using a trained deep forest machine learning model. O concentrations in summer were 2-3 times higher than those found in winter due to higher temperatures and greater solar irradiation. The spatial distributions of O correlate with the solar radiation showing decreased trends from the northeastern to the southwestern FWP, with the highest O values in Shanxi Province and the lowest in Shaanxi Province. For urban areas, croplands and grasslands, the O photochemistry in summer is NO-limited or in the transitional regime, while it is VOC-limited in winter and other seasons. Reducing NO emissions would be effective for decreasing O levels in summer, while VOC reductions are necessary for winter. The annual cycle in vegetated areas included both NO-limited and transitional regimes, indicating the importance of NO controls to protect ecosystems. The O response to limiting precursors shown here is of importance for optimizing control strategies and is illustrated by emission changes during the 2020 COVID-19 outbreak.
高地表臭氧 (O) 水平会影响人类和环境健康。汾渭平原 (FWP) 是中国“蓝天保卫战”的关键区域之一,报告称该地区存在严重的 O 污染问题。本研究利用 TROPOspheric Monitoring Instrument (TROPOMI) 从 2019 年到 2021 年的高分辨率数据,研究了 FWP 地区 O 污染的时空特征及其成因。本研究通过训练有素的深度森林机器学习模型,将 O 柱和地面监测数据进行关联,从而描述了 O 浓度的时空变化。由于较高的温度和较大的太阳辐射,夏季 O 浓度是冬季的 2-3 倍。O 浓度的空间分布与太阳辐射有关,表现出从东北向西南逐渐降低的趋势,其中山西省的 O 浓度最高,陕西省的 O 浓度最低。对于城市地区、农田和草地,夏季 O 光化学反应为 NO 限制或过渡状态,而冬季和其他季节为 VOC 限制。减少 NO 排放将有助于降低夏季 O 水平,而减少 VOC 排放则是冬季控制 O 污染的必要措施。植被区的年循环包括 NO 限制和过渡状态,这表明控制 NO 对于保护生态系统非常重要。本研究中 O 对限制前体物的响应对于优化控制策略具有重要意义,并通过 2020 年 COVID-19 爆发期间的排放变化得到了说明。