Suppr超能文献

一种新的基于机器学习的筛选方法鉴定出他汀类药物是钙泵 SERCA 的抑制剂。

A novel machine learning-based screening identifies statins as inhibitors of the calcium pump SERCA.

机构信息

Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.

Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.

出版信息

J Biol Chem. 2023 May;299(5):104681. doi: 10.1016/j.jbc.2023.104681. Epub 2023 Apr 6.

Abstract

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.

摘要

我们报告了一种新的小分子筛选方法,该方法结合了数据增强和机器学习,以鉴定来自骨骼肌(SERCA1a)和心肌(SERCA2a)的钙泵(肌浆网 Ca-ATP 酶,SERCA)的美国食品和药物管理局(FDA)批准的药物。这种方法使用小分子效应物的信息来映射和探测药理学靶标的化学空间,从而可以高精度地筛选包括批准和研究性药物在内的大量小分子数据库。我们选择 SERCA 是因为它在肌肉的兴奋-收缩-松弛循环中起主要作用,并且是骨骼肌和心肌的主要靶标。机器学习模型预测,七类他汀类药物(一组在美国食品和药物管理局批准的 3-羟基-3-甲基戊二酰基辅酶 A 还原酶抑制剂)是 SERCA1a 和 SERCA2a 的药理学靶标,这些药物在临床上用作降脂药物。我们通过使用体外 ATP 酶测定来验证机器学习预测,结果表明几种美国食品和药物管理局批准的他汀类药物是 SERCA1a 和 SERCA2a 的部分抑制剂。互补的原子模拟预测这些药物结合到泵的两个不同变构位点。我们的研究结果表明,SERCA 介导的 Ca 转运可能是某些他汀类药物(例如阿托伐他汀)的靶标,从而为文献中报道的他汀类药物相关毒性提供了一种分子途径。这些研究表明,基于数据增强和机器学习的筛选作为鉴定非靶标相互作用的通用平台具有适用性,并且该方法的适用性扩展到药物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b901/10193016/8c589790e6fd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验