Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, P. O. Box SYI 214, Sunyani, Ghana; National Nuclear Research Institute, Ghana Atomic Energy Commission, P. O. Box LG 80, Accra, Ghana.
Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P. O. Box 100, A-1400, Vienna, Austria.
Environ Pollut. 2023 Jul 1;328:121589. doi: 10.1016/j.envpol.2023.121589. Epub 2023 Apr 6.
Fertilizers increase agricultural productivity and farmers' income. However, intensive agriculture frequently overuses fertilizers, which in turn can contaminate surface and groundwater. In this study, hydrochemical and multi-isotope (δN, δO and δO) data have been combined to identify nitrate pollution sources in Ghana's Densu River Basin, trace the Nitrogen (N) biogeochemical processes in the basin and apportion the contribution of each pollution source. Surface water NO ranged from 0.3 to 10.6 mg/L (as N), while groundwater NO ranged from 0.9 to 34 mg/L. Hierarchical cluster analysis classified the water samples into three spatial categories: upstream, midstream, and downstream, reflecting river and land use patterns. The multi-isotope model considered five primary NO sources: atmospheric deposition, manure/sewage, NH in fertilizers, other NO based fertilizers and soil N. Nitrification was identified as the major biogeochemical process upstream, whereas mixing of sources and denitrification dominate the midstream to downstream sections of the basin. Nitrate source apportioning using a MixSIAR model reveal that N fertilizers (40 %) and soil N (34 %) contribute the most to nitrate pollution upstream of the river. From the midstream to downstream sections, manure/sewage (43 %) become the dominant nitrate source, reflecting the transition from agriculture to peri-urban and urban land use. This study has shown that soil erosion and runoff contribute to nitrate pollution in the Densu River, at levels comparable to N fertilizers, and groundwater across the basin is impacted mainly by manure/sewage. The multi-isotope analyses allowed the partitioning of N sources in other ways not possible using only classical hydrochemical methods.
肥料提高了农业生产力和农民收入。然而,集约化农业经常过度使用肥料,这反过来又会污染地表水和地下水。在这项研究中,水化学和多同位素(δN、δO 和 δO)数据已结合使用,以确定加纳登苏河流域硝酸盐污染的来源,追踪流域内氮(N)的生物地球化学过程,并分配每个污染源的贡献。地表水 NO 浓度范围为 0.3 至 10.6mg/L(以 N 计),而地下水 NO 浓度范围为 0.9 至 34mg/L。层次聚类分析将水样分为三个空间类别:上游、中游和下游,反映了河流和土地利用模式。多同位素模型考虑了五个主要的 NO 源:大气沉降、粪肥/污水、肥料中的 NH、其他基于 NO 的肥料和土壤 N。硝化作用被确定为上游主要的生物地球化学过程,而在河流的中、下游段,主要是源混合和反硝化作用。使用 MixSIAR 模型进行硝酸盐源分配表明,N 肥料(40%)和土壤 N(34%)对河流上游的硝酸盐污染贡献最大。从中游到下游,粪肥/污水(43%)成为主要的硝酸盐源,反映了从农业向城郊和城市土地利用的转变。本研究表明,土壤侵蚀和径流导致登苏河的硝酸盐污染程度与 N 肥料相当,而整个流域的地下水主要受到粪肥/污水的影响。多同位素分析允许以仅使用经典水化学方法无法实现的方式对 N 源进行分区。