Suppr超能文献

构建先进的 NiFe-LDH/MoS-NiS/NF 异质结构催化剂以实现高效电催化全水分解。

Construction of an Advanced NiFe-LDH/MoS-NiS/NF Heterostructure Catalyst toward Efficient Electrocatalytic Overall Water Splitting.

机构信息

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China.

Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States.

出版信息

Inorg Chem. 2023 Apr 24;62(16):6428-6438. doi: 10.1021/acs.inorgchem.3c00425. Epub 2023 Apr 9.

Abstract

Developing high-efficiency, low-cost, and earth-abundant electrocatalysts toward the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is highly desirable for boosting the energy efficiency of water splitting. Herein, we adopted an interfacial engineering strategy to enhance the overall water splitting (OWS) activity via constructing a bifunctional OER/HER electrocatalyst combining MoS-NiS with NiFe layered double hydroxide (NiFe-LDH) on a nickel foam substrate. The NiFe-LDH/MoS-NiS/NF electrocatalyst delivers superior OER/HER activity and stability, such as low overpotentials (220 and 79 mV for OER and HER at current densities of 50 and 10 mA cm, respectively) and a low Tafel slope. This excellent electrocatalytic performance mainly benefits from the electronic structure modulation and synergistic effects between NiFe-LDH and MoS-NiS, which provides a high electrochemical activity area, more active sites, and strong electron interaction. Furthermore, the assembly of NiFe-LDH/MoS-NiS/NF into a two-electrode system only requires an ultra-low cell voltage of 1.50 V at a current density of 10 mA cm and exhibits outstanding stability with a decay of current density of only 2.11% @50 mA cm after 50 h, which is far superior to numerous other reported transition metal NiFe-LDH and MoS-NiS-based as well as RuO||Pt-C electrocatalysts. This research highlights the rational design of heterostructures to efficiently advance electrocatalysis for water splitting applications.

摘要

开发高效、低成本、储量丰富的电催化剂对于提高水分解的能量效率至关重要,以推动氧气析出反应(OER)和析氢反应(HER)的发展。在此,我们采用界面工程策略,通过构建结合了 MoS-NiS 和 NiFe 层状双氢氧化物(NiFe-LDH)的双功能 OER/HER 电催化剂,在泡沫镍基底上增强整体水分解(OWS)的活性。NiFe-LDH/MoS-NiS/NF 电催化剂表现出优异的 OER/HER 活性和稳定性,例如在电流密度为 50 和 10 mA cm 时,过电势分别低至 220 和 79 mV,Tafel 斜率较低。这种优异的电催化性能主要得益于 NiFe-LDH 和 MoS-NiS 之间的电子结构调制和协同作用,这提供了高电化学活性面积、更多的活性位点和强电子相互作用。此外,将 NiFe-LDH/MoS-NiS/NF 组装成两电极系统仅需要在 10 mA cm 的电流密度下施加超低的 1.50 V 电池电压,并且在 50 h 后电流密度的衰减仅为 2.11%@50 mA cm,远远优于许多其他报道的过渡金属 NiFe-LDH 和基于 MoS-NiS 的以及 RuO||Pt-C 电催化剂。这项研究强调了合理设计异质结构以有效地推进水分解应用中的电催化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验