Suppr超能文献

基于数据增强生成对抗网络的深度胶囊神经网络在风力涡轮机齿轮箱单故障和同时故障诊断中的应用。

A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox.

机构信息

School of Mechanical Engineering, Yanshan University, Qinhuangdao, China.

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

出版信息

ISA Trans. 2023 Apr;135:462-475. doi: 10.1016/j.isatra.2022.10.008. Epub 2022 Oct 20.

Abstract

The fault diagnosis (FD) of wind turbine gearbox (WTG) is of special importance for keeping the wind turbine drivetrain working normally and safely. However, owing to the limited training data and the mutual interference of various mechanical parts, it is of great difficulty to realize the simultaneous-fault monitoring task of WTG using existing intelligent FD methods or manual inspection-based approaches. To tackle the issue, a deep capsule neural network with data augmentation generative adversarial networks, named ST-DAGANs-CapNet, is developed for the single and simultaneous FD of WTG by integrating capsule neural network (CapsNet) with Stockwell transform (ST) and data augmentation generative adversarial networks (DAGANs). The proposed ST-DAGANs-CapNet method mainly consists of three steps. First of all, ST is adopted to extract two-dimension (2-d) image features of time-frequency domain from raw time-domain vibration signals of WTG. Then, DAGANs are employed for generating more fake image samples to address the problem of lacking training data. At last, the built CapsNet model is utilized to diagnose the single and compound faults of WTG by the primary 2-d feature images and the made fake 2-d feature images in training set. Two experimental studies are implemented to prove the effectiveness of the proposed method, and the result is compared with some existing intelligent FD of WTG. It indicates that DAGANs are effective in helping to tackle the issue of limited and unbalanced training samples in real FD of WTG, and the diagnosis result of the proposed approach in test sample set is better than that of several commonly used FD methods in literatures.

摘要

风力涡轮机齿轮箱(WTG)的故障诊断(FD)对于保持风力涡轮机传动系统正常和安全运行至关重要。然而,由于训练数据有限以及各种机械部件的相互干扰,使用现有的智能 FD 方法或基于手动检查的方法实现 WTG 的同时故障监测任务具有很大的难度。为了解决这个问题,开发了一种基于深度胶囊神经网络和数据增强生成对抗网络的故障诊断方法,称为 ST-DAGANs-CapNet,用于 WTG 的单一和同时 FD,该方法将胶囊神经网络(CapsNet)与 Stockwell 变换(ST)和数据增强生成对抗网络(DAGANs)集成在一起。所提出的 ST-DAGANs-CapNet 方法主要包括三个步骤。首先,采用 ST 从 WTG 的原始时域振动信号中提取时频域的二维(2-d)图像特征。然后,使用 DAGANs 生成更多的虚假图像样本,以解决训练数据不足的问题。最后,利用所建立的 CapsNet 模型,通过训练集中的原始二维特征图像和生成的二维特征图像来诊断 WTG 的单一和复合故障。进行了两项实验研究来证明该方法的有效性,并将结果与一些现有的 WTG 智能 FD 方法进行了比较。结果表明,DAGANs 在解决 WTG 实际 FD 中有限和不平衡的训练样本问题方面非常有效,并且在测试样本集中,所提出的方法的诊断结果优于文献中几种常用的 FD 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验