Suppr超能文献

基于集成精炼复合多尺度波动逆离散熵的风力发电机组齿轮箱故障诊断方法

Fault Diagnosis Method for Wind Turbine Gearbox Based on Ensemble-Refined Composite Multiscale Fluctuation-Based Reverse Dispersion Entropy.

作者信息

Wang Xiang, Du Yang

机构信息

School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

School of Electrical Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

出版信息

Entropy (Basel). 2024 Aug 20;26(8):705. doi: 10.3390/e26080705.

Abstract

The diagnosis of faults in wind turbine gearboxes based on signal processing represents a significant area of research within the field of wind power generation. This paper presents an intelligent fault diagnosis method based on ensemble-refined composite multiscale fluctuation-based reverse dispersion entropy (ERCMFRDE) for a wind turbine gearbox vibration signal that is nonstationary and nonlinear and for noise problems. Firstly, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and stationary wavelet transform (SWT) are adopted for signal decomposition, noise reduction, and restructuring of gearbox signals. Secondly, we extend the single coarse-graining processing method of refined composite multiscale fluctuation-based reverse dispersion entropy (RCMFRDE) to the multiorder moment coarse-grained processing method, extracting mixed fault feature sets for denoised signals. Finally, the diagnostic results are obtained based on the least squares support vector machine (LSSVM). The dataset collected during the gearbox fault simulation on the experimental platform is employed as the research object, and the experiments are conducted using the method proposed in this paper. The experimental results demonstrate that the proposed method is an effective and reliable approach for accurately diagnosing gearbox faults, exhibiting high diagnostic accuracy and a robust performance.

摘要

基于信号处理的风力发电机组齿轮箱故障诊断是风力发电领域的一个重要研究方向。本文针对风力发电机组齿轮箱振动信号的非平稳、非线性以及噪声问题,提出了一种基于集成优化复合多尺度波动逆离散熵(ERCMFRDE)的智能故障诊断方法。首先,采用改进的自适应噪声完备总体平均经验模态分解(ICEEMDAN)和平稳小波变换(SWT)对齿轮箱信号进行分解、降噪和重构。其次,将精细复合多尺度波动逆离散熵(RCMFRDE)的单阶矩粗粒化处理方法扩展为多阶矩粗粒化处理方法,提取去噪后信号的混合故障特征集。最后,基于最小二乘支持向量机(LSSVM)获得诊断结果。以实验平台上齿轮箱故障模拟过程中采集的数据集为研究对象,采用本文提出的方法进行实验。实验结果表明,该方法是一种有效、可靠的齿轮箱故障精确诊断方法,具有较高的诊断精度和鲁棒性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aebf/11353331/bea64679604d/entropy-26-00705-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验