College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China.
Chem Asian J. 2023 Jun 15;18(12):e202300197. doi: 10.1002/asia.202300197. Epub 2023 May 12.
The severe photocorrosion of BiVO limits its application in solar energy conversion in the long-term photoelectrochemical stability test. Herein, we synthesized a Fe@Ni-MOFs/BiVO photoanode by a simple ultrasonic method and ultrafast deposition, which avoids the problems of damaging the surface structure of photoelectrode. The Fe@Ni-MOFs/BiVO shows a photocurrent density of 4.89 mA cm at 1.23 V with an onset potential of 0.25 V under one sun illumination. Importantly, a stability over 30 h at 0.7 V can be obtained, which is so far the best stability character for MOFs-based cocatalysts decorated on BiVO . During operation, Fe@Ni-MOFs transforms into a homogeneous and active hydroxide layer covering the surface, which exposes more active sites for OER reactions. This work demonstrates a simple strategy for MOFs co-catalysts to obtain fast hole transfer capability and reduce carrier recombination, thereby improving PEC performance.
在长期光电化学稳定性测试中,BiVO 的严重光腐蚀限制了其在太阳能转换中的应用。在此,我们通过简单的超声法和超快沉积合成了 Fe@Ni-MOFs/BiVO 光阳极,避免了损坏光电极表面结构的问题。Fe@Ni-MOFs/BiVO 在 1 个太阳光照下的起始电位为 0.25 V 时,光电流密度为 4.89 mA/cm。重要的是,在 0.7 V 下可以获得超过 30 h 的稳定性,这是迄今为止 MOFs 基共催化剂在 BiVO 上修饰的最佳稳定性特征。在操作过程中,Fe@Ni-MOFs 转化为覆盖表面的均匀且活性的氢氧化物层,为 OER 反应暴露更多的活性位点。这项工作展示了一种用于 MOFs 共催化剂的简单策略,以获得快速空穴转移能力并减少载流子复合,从而提高 PEC 性能。