Suppr超能文献

肺癌中利用成像技术预测气腔播散的进展:一项叙述性综述

Advances in the prediction of spread through air spaces with imaging in lung cancer: a narrative review.

作者信息

Wang Yun, Lyu Deng, Fan Li, Liu Shiyuan

机构信息

Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, China.

出版信息

Transl Cancer Res. 2023 Mar 31;12(3):624-630. doi: 10.21037/tcr-22-2593. Epub 2023 Mar 1.

Abstract

BACKGROUND AND OBJECTIVE

In 2015, the World Health Organization (WHO) officially defined spread through air spaces (STAS) as the fourth type of lung adenocarcinoma (ADC) invasion. STAS is recognized to have effects on the survival rate and the prognosis of patients who have received lung cancer surgery. Given that postoperative pathological diagnosis is the gold standard for STAS diagnosis, but the pathological findings cannot guide the selection of preoperative surgical plan, it is essential to accurately predict STAS before surgery to achieve optimal outcomes.

METHODS

A comprehensive, non-systematic review of the latest literature was carried out in order to define the advancement of imaging in predicting STAS. PubMed database was being examined and the last run was on 27 June 2022.

KEY CONTENT AND FINDINGS

In this review, the definition and the clinical significance of predicting STAS for lung cancer patients were being discussed. By summarizing the STAS prediction efficacy from imaging-related research, the results suggest that computed tomography (CT), 18-fluorine-fluorodeoxyglucose positron emission tomography/CT (F-FDG PET/CT), radiomics and deep learning (DL) are of great value in predicting STAS.

CONCLUSIONS

STAS is an important invasion type of lung cancer, affecting the survival prognosis of patients. Preoperative CT and F-FDG PET/CT have certain value in predicting the status of STAS, assisting clinicians in selecting an optimal surgical approach and postsurgical treatment. The prediction of STAS based on radiomics and DL can represent a future research direction.

摘要

背景与目的

2015年,世界卫生组织(WHO)正式将气腔播散(STAS)定义为肺腺癌(ADC)的第四种侵袭类型。STAS被认为会影响接受肺癌手术患者的生存率和预后。鉴于术后病理诊断是STAS诊断的金标准,但病理结果无法指导术前手术方案的选择,因此在手术前准确预测STAS以实现最佳治疗效果至关重要。

方法

为了明确影像学在预测STAS方面的进展,对最新文献进行了全面的非系统性综述。检索了PubMed数据库,最后一次检索时间为2022年6月27日。

关键内容与发现

在本综述中,讨论了肺癌患者预测STAS的定义及临床意义。通过总结影像学相关研究的STAS预测效能,结果表明计算机断层扫描(CT)、18氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)、影像组学和深度学习(DL)在预测STAS方面具有重要价值。

结论

STAS是肺癌的一种重要侵袭类型,影响患者的生存预后。术前CT和F-FDG PET/CT在预测STAS状态方面具有一定价值,可协助临床医生选择最佳手术方式和术后治疗方案。基于影像组学和DL的STAS预测可能代表未来的研究方向。

相似文献

1
Advances in the prediction of spread through air spaces with imaging in lung cancer: a narrative review.
Transl Cancer Res. 2023 Mar 31;12(3):624-630. doi: 10.21037/tcr-22-2593. Epub 2023 Mar 1.
2
Role of radiomics in predicting lung cancer spread through air spaces in a heterogeneous dataset.
Transl Lung Cancer Res. 2022 Apr;11(4):560-571. doi: 10.21037/tlcr-21-895.
3
CT-Based Deep-Learning Model for Spread-Through-Air-Spaces Prediction in Ground Glass-Predominant Lung Adenocarcinoma.
Ann Surg Oncol. 2024 Mar;31(3):1536-1545. doi: 10.1245/s10434-023-14565-2. Epub 2023 Nov 13.
4
18F FDG-PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma.
Ann Nucl Med. 2022 Oct;36(10):897-903. doi: 10.1007/s12149-022-01773-1. Epub 2022 Jul 12.
5
Meta-analysis of association between CT-based features and tumor spread through air spaces in lung adenocarcinoma.
J Cardiothorac Surg. 2020 Sep 10;15(1):243. doi: 10.1186/s13019-020-01287-9.
7
Research progress in predicting visceral pleural invasion of lung cancer: a narrative review.
Transl Cancer Res. 2024 Jan 31;13(1):462-470. doi: 10.21037/tcr-23-1318. Epub 2023 Dec 26.
8
CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
Eur Radiol. 2020 Jul;30(7):4050-4057. doi: 10.1007/s00330-020-06694-z. Epub 2020 Feb 28.

引用本文的文献

本文引用的文献

1
18F FDG-PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma.
Ann Nucl Med. 2022 Oct;36(10):897-903. doi: 10.1007/s12149-022-01773-1. Epub 2022 Jul 12.
2
3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer.
Diagn Interv Imaging. 2022 Nov;103(11):535-544. doi: 10.1016/j.diii.2022.06.002. Epub 2022 Jun 27.
6
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
7
Predictors of CT Morphologic Features to Identify Spread Through Air Spaces Preoperatively in Small-Sized Lung Adenocarcinoma.
Front Oncol. 2021 Jan 11;10:548430. doi: 10.3389/fonc.2020.548430. eCollection 2020.
8
Could tumor spread through air spaces benefit from adjuvant chemotherapy in stage I lung adenocarcinoma? A multi-institutional study.
Ther Adv Med Oncol. 2020 Dec 14;12:1758835920978147. doi: 10.1177/1758835920978147. eCollection 2020.
9
Prognostic impact of tumour spread through air space in radiological subsolid and pure solid lung adenocarcinoma.
Eur J Cardiothorac Surg. 2021 Apr 13;59(3):624-632. doi: 10.1093/ejcts/ezaa361.
10
A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma.
Quant Imaging Med Surg. 2020 Oct;10(10):1984-1993. doi: 10.21037/qims-20-724.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验