Suppr超能文献

术前通过CT形态学特征预测小尺寸肺腺癌气腔播散情况

Predictors of CT Morphologic Features to Identify Spread Through Air Spaces Preoperatively in Small-Sized Lung Adenocarcinoma.

作者信息

Qi Lin, Xue Ke, Cai Yongjun, Lu Jinjuan, Li Xiaohu, Li Ming

机构信息

Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Oncol. 2021 Jan 11;10:548430. doi: 10.3389/fonc.2020.548430. eCollection 2020.

Abstract

OBJECTIVES

This study aimed to explore the predictive CT features of spread through air spaces (STAS) in patients with small-sized lung adenocarcinoma.

METHODS

From January 2017 to May 2019, patients with confirmed pathology of small-sized lung adenocarcinoma (less than or equal to 2 cm) and who underwent surgery were retrospectively analyzed. The clinical, pathological, and surgical information and CT features were analyzed.

RESULTS

A total of 47 patients with STAS (males, 61.7%; mean age, 56 ± 8years) and 143 patients without STAS (males, 58%; mean age, 53 ± 11 years) were included. Pathologically, papillary, micropapillary, solid predominant subtypes, and vascular and pleural invasion were most commonly observed features in the STAS group. Radiologically, higher consolidation tumor ratio (CTR), presence of spiculation, satellites, ground glass ribbon sign, pleural attachment, and unclear tumor-lung interface were more commonly observed features in the STAS group. CTR, presence of ground glass ribbons and pleural connection, and absence of cystic airspaces were considered as stable predictors of STAS in multivariate logistic models. The receiver operating characteristic curve (ROC) analysis for predicting STAS demonstrated higher area under the curve (AUC) in the model that used CTR (0.760, 95% confidence interval, 0.69-0.83) for predicting STAS than in the model that used long diameter of entire lesion (0.640).

CONCLUSIONS

CTR is the best CT sign for predicting STAS in small-sized lung adenocarcinoma. The ground glass ribbon is a newly found indicator and has the potential for predicting STAS.

摘要

目的

本研究旨在探讨小尺寸肺腺癌患者气腔播散(STAS)的CT预测特征。

方法

回顾性分析2017年1月至2019年5月确诊为小尺寸肺腺癌(小于或等于2 cm)且接受手术的患者。分析其临床、病理、手术信息及CT特征。

结果

共纳入47例有STAS的患者(男性占61.7%;平均年龄56±8岁)和143例无STAS的患者(男性占58%;平均年龄53±11岁)。病理上,STAS组最常见的特征为乳头状、微乳头状、实性为主亚型以及血管和胸膜侵犯。影像学上,STAS组更常见的特征为更高的实变肿瘤比(CTR)、毛刺征、卫星灶、磨玻璃带征、胸膜附着以及肿瘤-肺界面不清。在多因素逻辑回归模型中,CTR、磨玻璃带和胸膜连接的存在以及无囊状气腔被认为是STAS的稳定预测因素。预测STAS的受试者操作特征曲线(ROC)分析显示,使用CTR预测STAS的模型(曲线下面积[AUC]为0.760,95%置信区间为0.69 - 0.83)的AUC高于使用整个病灶长径的模型(0.640)。

结论

CTR是预测小尺寸肺腺癌STAS的最佳CT征象。磨玻璃带是新发现的指标,具有预测STAS的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c00b/7831277/330d92142d2f/fonc-10-548430-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验