Hladyshau Siarhei, Stoop Jorik P, Kamada Kosei, Nie Shuyi, Tsygankov Denis V
bioRxiv. 2023 Mar 31:2023.03.31.535147. doi: 10.1101/2023.03.31.535147.
Rho-GTPases are central regulators within a complex signaling network that controls the cytoskeletal organization and cell movement. This network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, and their numerous effectors that provide mutual regulation and feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling using a simulation model which couples GTPase signaling with cell morphodynamics to capture the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of the time-lapsed recordings of cell dynamics and GTPase activity. This approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.
Rho - GTPases是复杂信号网络中的核心调节因子,该网络控制细胞骨架组织和细胞运动。这个网络包括多个GTPases,如研究最多的Rac1、Cdc42和RhoA,以及它们众多的效应器,这些效应器提供相互调节和反馈回路。在这里,我们使用一个将GTPase信号传导与细胞形态动力学相结合的模拟模型,研究膜波动过程中Rac1和Cdc42之间的时空关系,以捕捉基于FRET的生物传感器所观察到的GTPase行为。我们表明,膜速度受GTPase激活的动力学速率调节,而不是活性GTPase的浓度调节。我们的模型捕捉到了均匀和极化的波动。我们还表明,Rac1和Cdc42激活之间的细胞类型特异性时间延迟可以通过一个单一的信号基序来再现,其中延迟由Cdc42对Rac1的反馈控制。我们模拟输出的分辨率与细胞动力学和GTPase活性的延时记录相匹配。这种方法使我们能够使用相同的管道对模拟和实验数据进行分析,以定量精度验证模拟结果。