Suppr超能文献

Rac1 和 Cdc42 GTPases 调节骨细胞中剪切力驱动的β-连环蛋白信号转导。

Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts.

机构信息

Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.

出版信息

Biochem Biophys Res Commun. 2013 Apr 19;433(4):502-7. doi: 10.1016/j.bbrc.2013.03.020. Epub 2013 Mar 21.

Abstract

Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1Hz) shear stress (10 dynes/cm2) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate that both Rac1 and Cdc42 GTPases are critical regulators in shear stress-driven β-catenin signaling in osteoblasts.

摘要

β-连环蛋白依赖性 T 细胞因子/淋巴细胞增强因子(T-cell factor/lymphocyte enhancing factor,TCF/LEF)已知具有机械敏感性,是促进骨形成的重要调节因子。然而,在成骨细胞中,TCF/LEF 活性与 Rho 家族 GTPases 之间的功能联系尚不清楚。在此,我们通过活细胞成像研究了振荡剪切力诱导 MC3T3-E1 成骨细胞中 TCF/LEF 活性的分子机制。我们采用了荧光共振能量转移(fluorescence resonance energy transfer,FRET)和绿色荧光蛋白(green fluorescent protein,GFP)生物传感器,能够实时监测活细胞中的信号转导。振荡(1Hz)剪切力(10 达因/平方厘米)增加了 TCF/LEF 活性,并刺激β-连环蛋白向细胞核易位,同时 Rac1 和 Cdc42 具有独特的活性模式。Rac1 和 Cdc42 的抑制作用(通过其显性失活突变体或选择性药物)阻断了剪切力诱导的 TCF/LEF 活性,但 RhoA 的显性失活突变体则没有。相反,组成性激活的 Rac1 和 Cdc42 突变体显著增强了 TCF/LEF 活性。此外,Rac1 和 Cdc42 的激活增加了 TCF/LEF 活性的基础水平,而抑制则降低了基础水平。有趣的是,细胞骨架结构的破坏或肌球蛋白活性的抑制并不显著影响剪切力诱导的 TCF/LEF 活性。尽管 Rac1 被报道参与了癌细胞中的β-连环蛋白,但 Cdc42 在成骨细胞中β-连环蛋白信号的参与尚未得到证实。本研究中的发现表明,Rac1 和 Cdc42 GTPases 都是成骨细胞中剪切力驱动的β-连环蛋白信号的关键调节因子。

相似文献

1
Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts.
Biochem Biophys Res Commun. 2013 Apr 19;433(4):502-7. doi: 10.1016/j.bbrc.2013.03.020. Epub 2013 Mar 21.
2
RhoA GTPase interacts with beta-catenin signaling in clinorotated osteoblasts.
J Bone Miner Metab. 2013 Sep;31(5):520-32. doi: 10.1007/s00774-013-0449-6. Epub 2013 Mar 26.
6
Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant.
J Biol Chem. 2004 Jan 30;279(5):3777-86. doi: 10.1074/jbc.M308282200. Epub 2003 Nov 3.
7
Heterotrimeric G protein betagamma subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42.
J Biol Chem. 2008 Jan 25;283(4):1946-53. doi: 10.1074/jbc.M707037200. Epub 2007 Nov 28.
8
A role of STAT3 in Rho GTPase-regulated cell migration and proliferation.
J Biol Chem. 2005 Apr 29;280(17):17275-85. doi: 10.1074/jbc.M413187200. Epub 2005 Feb 10.
9
Cellular cytoskeleton dynamics modulates non-viral gene delivery through RhoGTPases.
PLoS One. 2012;7(4):e35046. doi: 10.1371/journal.pone.0035046. Epub 2012 Apr 11.

引用本文的文献

2
Exosomal Long Noncoding RNAs in NSCLC: Dysfunctions and Clinical Potential.
J Cancer. 2023 Jun 12;14(10):1736-1750. doi: 10.7150/jca.84506. eCollection 2023.
3
Mutual connected IL-6, EGFR and LIN28/Let7-related mechanisms modulate PD-L1 and IGF upregulation in HNSCC using immunotherapy.
Front Oncol. 2023 Apr 12;13:1140133. doi: 10.3389/fonc.2023.1140133. eCollection 2023.
4
A biomechanical view of epigenetic tumor regulation.
J Biol Phys. 2023 Sep;49(3):283-307. doi: 10.1007/s10867-023-09633-3. Epub 2023 Apr 1.
5
PBMC CDC42 reveals the disease activity and treatment efficacy of TNF inhibitor in patients with ankylosing spondylitis.
J Clin Lab Anal. 2022 Mar;36(3):e24267. doi: 10.1002/jcla.24267. Epub 2022 Feb 1.
6
An variant links aberrant Rac1 function to early-onset skeletal fragility.
JBMR Plus. 2021 Jun 7;5(7):e10509. doi: 10.1002/jbm4.10509. eCollection 2021 Jul.
8
The cytoskeleton and connected elements in bone cell mechano-transduction.
Bone. 2021 Aug;149:115971. doi: 10.1016/j.bone.2021.115971. Epub 2021 Apr 21.

本文引用的文献

1
RhoA-mediated signaling in mechanotransduction of osteoblasts.
Connect Tissue Res. 2012;53(5):398-406. doi: 10.3109/03008207.2012.671398. Epub 2012 Apr 10.
2
Rac signaling in osteoblastic cells is required for normal bone development but is dispensable for hematopoietic development.
Blood. 2012 Jan 19;119(3):736-44. doi: 10.1182/blood-2011-07-368753. Epub 2011 Nov 28.
3
Mechanical loading: bone remodeling and cartilage maintenance.
Curr Osteoporos Rep. 2011 Dec;9(4):237-42. doi: 10.1007/s11914-011-0067-y.
5
Mechanotransduction in bone repair and regeneration.
FASEB J. 2010 Oct;24(10):3625-32. doi: 10.1096/fj.10-157370. Epub 2010 May 26.
6
Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization.
J Clin Invest. 2010 Jun;120(6):1981-93. doi: 10.1172/JCI39650. Epub 2010 May 24.
7
Wnt proteins promote bone regeneration.
Sci Transl Med. 2010 Apr 28;2(29):29ra30. doi: 10.1126/scitranslmed.3000231.
8
Rapid activation of Rac GTPase in living cells by force is independent of Src.
PLoS One. 2009 Nov 18;4(11):e7886. doi: 10.1371/journal.pone.0007886.
9
Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.
Nature. 2009 Oct 1;461(7264):614-20. doi: 10.1038/nature08356. Epub 2009 Sep 16.
10
Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.
J Cell Sci. 2009 Feb 15;122(Pt 4):546-53. doi: 10.1242/jcs.036293. Epub 2009 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验