Suppr超能文献

基于CT的机器学习用于移植前供体肺筛查

CT-based Machine Learning for Donor Lung Screening Prior to Transplantation.

作者信息

Ram Sundaresh, Verleden Stijn E, Kumar Madhav, Bell Alexander J, Pal Ravi, Ordies Sofie, Vanstapel Arno, Dubbeldam Adriana, Vos Robin, Galban Stefanie, Ceulemans Laurens J, Frick Anna E, Van Raemdonck Dirk E, Verschakelen Johny, Vanaudenaerde Bart M, Verleden Geert M, Lama Vibha N, Neyrinck Arne P, Galban Craig J

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI, United States.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.

出版信息

medRxiv. 2023 Mar 29:2023.03.28.23287705. doi: 10.1101/2023.03.28.23287705.

Abstract

BACKGROUND

Assessment and selection of donor lungs remains largely subjective and experience based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the current donor pool. Using ex vivo CT images, we investigated the use of a CT-based machine learning algorithm for screening donor lungs prior to transplantation.

METHODS

Clinical measures and ex-situ CT scans were collected from 100 cases as part of a prospective clinical trial. Following procurement, donor lungs were inflated, placed on ice according to routine clinical practice, and imaged using a clinical CT scanner prior to transplantation while stored in the icebox. We trained and tested a supervised machine learning method called , which uses CT scans and learns specific image patterns and features pertaining to each class for a classification task. The results were evaluated with donor and recipient clinical measures.

RESULTS

Of the 100 lung pairs donated, 70 were considered acceptable for transplantation (based on standard clinical assessment) prior to CT screening and were consequently implanted. The remaining 30 pairs were screened but not transplanted. Our machine learning algorithm was able to detect pulmonary abnormalities on the CT scans. Among the patients who received donor lungs, our algorithm identified recipients who had extended stays in the ICU and were at 19 times higher risk of developing CLAD within 2 years post-transplant.

CONCLUSIONS

We have created a strategy to ex vivo screen donor lungs using a CT-based machine learning algorithm. As the use of suboptimal donor lungs rises, it is important to have in place objective techniques that will assist physicians in accurately screening donor lungs to identify recipients most at risk of post-transplant complications.

摘要

背景

供体肺的评估和选择在很大程度上仍然是主观的且基于经验。接受或拒绝供肺的标准缺乏标准化,且不符合当前的供体库情况。我们利用离体CT图像,研究了一种基于CT的机器学习算法在肺移植前筛选供体肺的应用。

方法

作为一项前瞻性临床试验的一部分,收集了100例患者的临床指标和离体CT扫描数据。获取供体肺后,按照常规临床操作将其充气,置于冰上,并在移植前使用临床CT扫描仪进行成像,期间保存在冰盒中。我们训练并测试了一种名为 的监督式机器学习方法,该方法利用CT扫描并学习与每个类别相关的特定图像模式和特征以进行分类任务。结果通过供体和受体的临床指标进行评估。

结果

在捐赠的100对肺中,70对在CT筛查前被认为可接受移植(基于标准临床评估)并因此进行了植入。其余30对进行了筛查但未移植。我们的机器学习算法能够在CT扫描上检测出肺部异常。在接受供体肺的患者中,我们的算法识别出了在ICU停留时间延长且移植后2年内发生慢性肺移植功能障碍风险高19倍的受体。

结论

我们创建了一种利用基于CT的机器学习算法对供体肺进行离体筛查的策略。随着使用次优供体肺的情况增多,拥有客观技术以协助医生准确筛查供体肺从而识别出移植后并发症风险最高的受体非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d3/10081423/8e7f5e33293a/nihpp-2023.03.28.23287705v1-f0001.jpg

相似文献

1
CT-based Machine Learning for Donor Lung Screening Prior to Transplantation.
medRxiv. 2023 Mar 29:2023.03.28.23287705. doi: 10.1101/2023.03.28.23287705.
2
Computed tomography-based machine learning for donor lung screening before transplantation.
J Heart Lung Transplant. 2024 Mar;43(3):394-402. doi: 10.1016/j.healun.2023.09.018. Epub 2023 Sep 29.
4
Extended criteria donor lungs and clinical outcome: results of an alternative allocation algorithm.
J Heart Lung Transplant. 2013 Nov;32(11):1065-72. doi: 10.1016/j.healun.2013.06.021. Epub 2013 Aug 13.
5
Standard donor lung procurement with normothermic ex vivo lung perfusion: A prospective randomized clinical trial.
J Heart Lung Transplant. 2017 Jul;36(7):744-753. doi: 10.1016/j.healun.2017.02.011. Epub 2017 Feb 20.
6
One-year experience with ex vivo lung perfusion: Preliminary results from a single center.
Int J Artif Organs. 2018 Aug;41(8):460-466. doi: 10.1177/0391398818783391. Epub 2018 Jul 5.
7
An observational study of Donor Ex Vivo Lung Perfusion in UK lung transplantation: DEVELOP-UK.
Health Technol Assess. 2016 Nov;20(85):1-276. doi: 10.3310/hta20850.
8
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
9
Prevention of viral transmission during lung transplantation with hepatitis C-viraemic donors: an open-label, single-centre, pilot trial.
Lancet Respir Med. 2020 Feb;8(2):192-201. doi: 10.1016/S2213-2600(19)30268-1. Epub 2019 Oct 9.

本文引用的文献

1
Improved detection of air trapping on expiratory computed tomography using deep learning.
PLoS One. 2021 Mar 24;16(3):e0248902. doi: 10.1371/journal.pone.0248902. eCollection 2021.
2
A new lung donor score to predict short and long-term survival in lung transplantation.
J Thorac Dis. 2020 Oct;12(10):5485-5494. doi: 10.21037/jtd-20-2043.
3
The Future Role of Machine Learning in Clinical Transplantation.
Transplantation. 2021 Apr 1;105(4):723-735. doi: 10.1097/TP.0000000000003424.
4
Histopathologic and radiologic assessment of nontransplanted donor lungs.
Am J Transplant. 2020 Jun;20(6):1712-1719. doi: 10.1111/ajt.15790. Epub 2020 Feb 11.
5
Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review.
Hepatology. 2020 Mar;71(3):1093-1105. doi: 10.1002/hep.31103. Epub 2020 Mar 6.
6
Deep Learning Enables Automatic Classification of Emphysema Pattern at CT.
Radiology. 2020 Feb;294(2):434-444. doi: 10.1148/radiol.2019191022. Epub 2019 Dec 3.
7
Chest computed tomography imaging improves potential lung donor assessment.
J Thorac Cardiovasc Surg. 2019 Apr;157(4):1711-1718.e1. doi: 10.1016/j.jtcvs.2018.11.038. Epub 2018 Nov 24.
8
Donor Lung Procurement by Surgical Fellow With an Expectation of High Rate of Lung Utilisation.
Heart Lung Circ. 2018 Aug;27(8):961-966. doi: 10.1016/j.hlc.2017.12.007. Epub 2017 Dec 22.
10
Real-Time Computed Tomography Highlights Pulmonary Parenchymal Evolution During Ex Vivo Lung Reconditioning.
Ann Thorac Surg. 2017 Jun;103(6):e535-e537. doi: 10.1016/j.athoracsur.2016.12.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验