Suppr超能文献

用于生物材料植入物非牺牲性分析的可寻址微流控技术

Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants .

作者信息

Nguyen Minh, Tong Anh, Volosov Mark, Madhavarapu Shreya, Freeman Joseph, Voronov Roman

机构信息

Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, 161 Warren Street, Newark, New Jersey 07102, USA.

Helen and John C. Hartmann Department of Electrical and Computer Engineering, New Jersey Institute of Technology Newark College of Engineering, Suite 200 University Heights, Newark, New Jersey 07102, USA.

出版信息

Biomicrofluidics. 2023 Apr 3;17(2):024103. doi: 10.1063/5.0137932. eCollection 2023 Mar.

Abstract

Tissue regeneration-promoting and drug-eluting biomaterials are commonly implanted into animals as a part of late-stage testing before committing to human trials required by the government. Because the trials are very expensive (e.g., they can cost over a billion U.S. dollars), it is critical for companies to have the best possible characterization of the materials' safety and efficacy before it goes into a human. However, the conventional approaches to biomaterial evaluation necessitate sacrificial analysis (i.e., euthanizing a different animal for measuring each time point and retrieving the implant for histological analysis), due to the inability to monitor how the host tissues respond to the presence of the material . This is expensive, inaccurate, discontinuous, and unethical. In contrast, our manuscript presents a novel microfluidic platform potentially capable of performing non-disruptive fluid manipulations within the spatial constraints of an 8 mm diameter critical calvarial defect-a "gold standard" model for testing engineered bone tissue scaffolds in living animals. In particular, here, addressable microfluidic plumbing is specifically adapted for the implantation into a simulated rat's skull, and is integrated with a combinatorial multiplexer for a better scaling of many time points and/or biological signal measurements. The collected samples (modeled as food dyes for proof of concept) are then transported, stored, and analyzed , which adds previously-unavailable ease and flexibility. Furthermore, care is taken to maintain a fluid equilibrium in the simulated animal's head during the sampling to avoid damage to the host and to the implant. Ultimately, future implantation protocols and technology improvements are envisioned toward the end of the manuscript. Although the bone tissue engineering application was chosen as a proof of concept, with further work, the technology is potentially versatile enough for other sampling applications. Hence, the successful outcomes of its advancement should benefit companies developing, testing, and producing vaccines and drugs by accelerating the translation of advanced cell culturing tech to the clinical market. Moreover, the nondestructive monitoring of the environment can lower animal experiment costs and provide data-gathering continuity superior to the conventional destructive analysis. Lastly, the reduction of sacrifices stemming from the use of this technology would make future animal experiments more ethical.

摘要

促进组织再生和药物洗脱的生物材料通常在政府要求的人体试验之前,作为后期测试的一部分植入动物体内。由于这些试验非常昂贵(例如,可能花费超过十亿美元),对于公司来说,在材料进入人体之前对其安全性和有效性进行尽可能好的表征至关重要。然而,由于无法监测宿主组织对材料存在的反应,传统的生物材料评估方法需要进行牺牲性分析(即每次测量时间点时安乐死一只不同的动物,并取出植入物进行组织学分析)。这既昂贵、不准确、不连续,又不符合伦理道德。相比之下,我们的论文提出了一种新型微流控平台,该平台有可能在直径为8毫米的关键颅骨缺损的空间限制内进行非侵入性流体操作,这是在活体动物中测试工程骨组织支架的“金标准”模型。特别是,这里的可寻址微流控管道专门适用于植入模拟大鼠颅骨,并与组合多路复用器集成,以便更好地扩展多个时间点和/或生物信号测量。然后对收集的样本(以食用色素作为概念验证)进行运输、存储和分析,这增加了以前无法获得的便利性和灵活性。此外,在采样过程中要注意保持模拟动物头部的流体平衡,以避免对宿主和植入物造成损害。最终,论文结尾设想了未来的植入方案和技术改进。尽管选择骨组织工程应用作为概念验证,但经过进一步研究,该技术可能具有足够的通用性,适用于其他采样应用。因此,其发展的成功成果应该通过加速先进细胞培养技术向临床市场的转化,使开发、测试和生产疫苗及药物的公司受益。此外,对环境的非破坏性监测可以降低动物实验成本,并提供优于传统破坏性分析的数据收集连续性。最后,使用该技术减少牺牲将使未来的动物实验更加符合伦理道德。

相似文献

1
Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants .
Biomicrofluidics. 2023 Apr 3;17(2):024103. doi: 10.1063/5.0137932. eCollection 2023 Mar.
2
Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
ACS Biomater Sci Eng. 2020 Mar 9;6(3):1809-1820. doi: 10.1021/acsbiomaterials.9b01969. Epub 2020 Feb 25.
3
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Microfluidic 3D platform to evaluate endothelial progenitor cell recruitment by bioactive materials.
Acta Biomater. 2022 Oct 1;151:264-277. doi: 10.1016/j.actbio.2022.08.019. Epub 2022 Aug 15.
10

本文引用的文献

2
On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid.
Anal Chem. 2022 Jul 26;94(29):10415-10426. doi: 10.1021/acs.analchem.2c01577. Epub 2022 Jul 5.
3
3D Printing of PLLA/Biomineral Composite Bone Tissue Engineering Scaffolds.
Materials (Basel). 2022 Jun 17;15(12):4280. doi: 10.3390/ma15124280.
4
The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds.
J Orthop Surg Res. 2022 Jun 20;17(1):320. doi: 10.1186/s13018-022-03213-2.
6
Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals.
ACS Appl Mater Interfaces. 2023 Jan 11;15(1):138-157. doi: 10.1021/acsami.2c02740. Epub 2022 Apr 8.
9
Clinical development times for innovative drugs.
Nat Rev Drug Discov. 2022 Nov;21(11):793-794. doi: 10.1038/d41573-021-00190-9.
10
Thermally-actuated microfluidic membrane valve for point-of-care applications.
Microsyst Nanoeng. 2021 Jun 15;7:48. doi: 10.1038/s41378-021-00260-3. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验