Suppr超能文献

一种用于臂丛神经损伤患者的新型机器人手套系统的设计、控制与实验评估

Design, Control, and Experimental Evaluation of A Novel Robotic Glove System for Patients with Brachial Plexus Injuries.

作者信息

Xu Wenda, Guo Yunfei, Bravo Cesar, Ben-Tzvi Pinhas

机构信息

Mechanical Engineering department in Virginia Tech.

Electrical and Computer Engineering department in Virginia Tech.

出版信息

IEEE Trans Robot. 2023 Apr;39(2):1637-1652. doi: 10.1109/tro.2022.3220973. Epub 2022 Nov 23.

Abstract

This paper presents the development of an exoskeleton glove system for people who suffer from brachial plexus injuries, aiming to assist their lost grasping functionality. The robotic system consists of a portable glove system and an embedded controller. The glove system consists of Linear Series Elastic Actuators (LSEA), Rotary Series Elastic Actuators (RSEA), and optimized finger linkages to provide imitated human motion to each finger and a coupled motion of the hand. The design principles and optimization strategies were investigated to balance functionality, portability, and stability. The model-based force control strategy compensated with a backlash model and model-free force control strategy are presented and compared. Results show that our proposed model-free control method achieves the goal of accurate force control. Finally, experiments were conducted with the prototype of the developed integrated exoskeleton glove system. Results from 3 subjects with 150 trials show that our proposed exoskeleton glove system has the potential to be used as a rehabilitation device for patients.

摘要

本文介绍了一种针对臂丛神经损伤患者的外骨骼手套系统的研发,旨在辅助恢复其丧失的抓握功能。该机器人系统由一个便携式手套系统和一个嵌入式控制器组成。手套系统由线性串联弹性驱动器(LSEA)、旋转串联弹性驱动器(RSEA)以及优化的手指连杆机构组成,可为每个手指提供模仿人类的运动以及手部的耦合运动。研究了设计原则和优化策略,以平衡功能性、便携性和稳定性。提出并比较了基于模型的力控制策略(采用间隙模型进行补偿)和无模型力控制策略。结果表明,我们提出的无模型控制方法实现了精确力控制的目标。最后,使用所开发的集成外骨骼手套系统的原型进行了实验。3名受试者进行150次试验的结果表明,我们提出的外骨骼手套系统有潜力用作患者的康复设备。

相似文献

1
Design, Control, and Experimental Evaluation of A Novel Robotic Glove System for Patients with Brachial Plexus Injuries.
IEEE Trans Robot. 2023 Apr;39(2):1637-1652. doi: 10.1109/tro.2022.3220973. Epub 2022 Nov 23.
3
A NOVEL DESIGN OF A ROBOTIC GLOVE SYSTEM FOR PATIENTS WITH BRACHIAL PLEXUS INJURIES.
Proc ASME Des Eng Tech Conf. 2020 Aug;10. doi: 10.1115/detc2020-22348. Epub 2020 Nov 3.
4
Development of a Novel Low-profile Robotic Exoskeleton Glove for Patients with Brachial Plexus Injuries.
Rep U S. 2022 Oct;2022:11121-11126. doi: 10.1109/iros47612.2022.9981124. Epub 2022 Dec 26.
5
A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON.
Proc ASME Dyn Syst Control Conf. 2019 Oct;2019(3). doi: 10.1115/DSCC2019-8996. Epub 2019 Nov 26.
6
Stable Grasp Control With a Robotic Exoskeleton Glove.
J Mech Robot. 2020 Dec 1;12(6):061015. doi: 10.1115/1.4047724. Epub 2020 Jul 28.
7
Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.
Front Neurosci. 2017 Oct 9;11:547. doi: 10.3389/fnins.2017.00547. eCollection 2017.
8
Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
IEEE Trans Neural Syst Rehabil Eng. 2015 Nov;23(6):992-1002. doi: 10.1109/TNSRE.2014.2378171. Epub 2014 Dec 4.
9
Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity.
HardwareX. 2024 May 7;18:e00537. doi: 10.1016/j.ohx.2024.e00537. eCollection 2024 Jun.
10
Flexo-glove: A 3D Printed Soft Exoskeleton Robotic Glove for Impaired Hand Rehabilitation and Assistance.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2120-2123. doi: 10.1109/EMBC.2018.8512617.

引用本文的文献

1
Enhancing Grasping Function with a Thermoresponsive Ionogel Adhesive Glove for Patients with Rheumatic Diseases.
Adv Sci (Weinh). 2025 Jul;12(26):e2414761. doi: 10.1002/advs.202414761. Epub 2025 Mar 26.
2
Combining soft robotics and telerehabilitation for improving motor function after stroke.
Wearable Technol. 2024 Jan 26;5:e1. doi: 10.1017/wtc.2023.26. eCollection 2024.

本文引用的文献

1
A NOVEL DESIGN OF A ROBOTIC GLOVE SYSTEM FOR PATIENTS WITH BRACHIAL PLEXUS INJURIES.
Proc ASME Des Eng Tech Conf. 2020 Aug;10. doi: 10.1115/detc2020-22348. Epub 2020 Nov 3.
2
INTEGRATED AND CONFIGURABLE VOICE ACTIVATION AND SPEAKER VERIFICATION SYSTEM FOR A ROBOTIC EXOSKELETON GLOVE.
Proc ASME Des Eng Tech Conf. 2020 Aug;10. doi: 10.1115/detc2020-22365. Epub 2020 Nov 3.
3
Personalized Voice Activated Grasping System for a Robotic Exoskeleton Glove .
Mechatronics (Oxf). 2022 May;83. doi: 10.1016/j.mechatronics.2022.102745. Epub 2022 Feb 3.
4
A General Purpose Robotic Hand Exoskeleton With Series Elastic Actuation.
J Mech Robot. 2019 Dec;11(6). doi: 10.1115/1.4044543. Epub 2019 Sep 10.
5
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit.
Proc Math Phys Eng Sci. 2018 Nov;474(2219):20180335. doi: 10.1098/rspa.2018.0335. Epub 2018 Nov 14.
6
Intelligent Object Grasping With Sensor Fusion for Rehabilitation and Assistive Applications.
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1556-1565. doi: 10.1109/TNSRE.2018.2848549. Epub 2018 Jun 18.
7
A structured overview of trends and technologies used in dynamic hand orthoses.
J Neuroeng Rehabil. 2016 Jun 29;13(1):62. doi: 10.1186/s12984-016-0168-z.
8
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3932-7. doi: 10.1073/pnas.1517384113. Epub 2016 Mar 28.
9
Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.
J Hand Ther. 2016 Jan-Mar;29(1):51-7; quiz 57. doi: 10.1016/j.jht.2015.11.006. Epub 2015 Nov 26.
10
Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.
IEEE Trans Neural Syst Rehabil Eng. 2016 Dec;24(12):1323-1332. doi: 10.1109/TNSRE.2015.2501748. Epub 2015 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验