Burzurí Enrique, Martínez-Pérez María José, Martí-Gastaldo Carlos, Evangelisti Marco, Mañas-Valero Samuel, Coronado Eugenio, Martínez Jesús I, Galan-Mascaros Jose Ramon, Luis Fernando
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid E-28049 Madrid Spain
Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid E-28049 Madrid Spain.
Chem Sci. 2023 Mar 22;14(14):3899-3906. doi: 10.1039/d2sc06407c. eCollection 2023 Apr 5.
A quantum spin liquid (QSL) is an elusive state of matter characterized by the absence of long-range magnetic order, even at zero temperature, and by the presence of exotic quasiparticle excitations. In spite of their relevance for quantum communication, topological quantum computation and the understanding of strongly correlated systems, like high-temperature superconductors, the unequivocal experimental identification of materials behaving as QSLs remains challenging. Here, we present a novel 2D heterometallic oxalate complex formed by high-spin Co(ii) ions alternating with diamagnetic Rh(iii) in a honeycomb lattice. This complex meets the key requirements to become a QSL: a spin ½ ground state for Co(ii), determined by spin-orbit coupling and crystal field, a magnetically-frustrated triangular lattice due to the presence of antiferromagnetic correlations, strongly suppressed direct exchange interactions and the presence of equivalent interfering superexchange paths between Co centres. A combination of electronic paramagnetic resonance, specific heat and ac magnetic susceptibility measurements in a wide range of frequencies and temperatures shows the presence of strong antiferromagnetic correlations concomitant with no signs of magnetic ordering down to 15 mK. These results show that bimetallic oxalates are appealing QSL candidates as well as versatile systems to chemically fine tune key aspects of a QSL, like magnetic frustration and superexchange path geometries.
量子自旋液体(QSL)是一种难以捉摸的物质状态,其特征是即使在零温度下也不存在长程磁序,并且存在奇异的准粒子激发。尽管它们与量子通信、拓扑量子计算以及对高温超导体等强关联系统的理解相关,但明确实验识别表现为QSL的材料仍然具有挑战性。在此,我们展示了一种新型二维异金属草酸盐配合物,它由高自旋Co(II)离子与反磁性Rh(III)在蜂窝晶格中交替形成。这种配合物满足成为QSL的关键要求:由自旋轨道耦合和晶体场决定的Co(II)的自旋1/2基态、由于反铁磁相关性的存在而产生的磁阻挫三角晶格、强烈抑制的直接交换相互作用以及Co中心之间等效干扰超交换路径的存在。在广泛的频率和温度范围内进行的电子顺磁共振、比热和交流磁化率测量的组合表明,存在强反铁磁相关性,并且在低至15 mK时没有磁有序的迹象。这些结果表明,双金属草酸盐是有吸引力的QSL候选物,也是用于化学微调QSL关键方面(如磁阻挫和超交换路径几何形状)的通用系统。