Suppr超能文献

用于人体健康监测和机器学习辅助识别的超拉伸高导电性基于MXene的有机水凝胶

Ultrastretchable High-Conductivity MXene-Based Organohydrogels for Human Health Monitoring and Machine-Learning-Assisted Recognition.

作者信息

Li Qingqing, Zhi Xinrong, Xia Yifan, Han Shilei, Guo Wenyu, Li Mingyuan, Wang Xin

机构信息

Henan Key Lab for Photovoltaic Materials, Henan University, Kaifeng 475004, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19435-19446. doi: 10.1021/acsami.3c00432. Epub 2023 Apr 10.

Abstract

Conductive hydrogels as promising candidates of wearable electronics have attracted considerable interest in health monitoring, multifunctional electronic skins, and human-machine interfaces. However, to simultaneously achieve excellent electrical properties, superior stretchability, and a low detection threshold of conductive hydrogels remains an extreme challenge. Herein, an ultrastretchable high-conductivity MXene-based organohydrogel (M-OH) is developed for human health monitoring and machine-learning-assisted object recognition, which is fabricated based on a TiCT MXene/lithium salt (LS)/poly(acrylamide) (PAM)/poly(vinyl alcohol) (PVA) hydrogel through a facile immersion strategy in a glycerol/water binary solvent. The fabricated M-OH demonstrates remarkable stretchability (2000%) and high conductivity (4.5 S/m) due to the strong interaction between MXene and the dual-network PVA/PAM hydrogel matrix and the incorporation between MXene and LS, respectively. Meanwhile, M-OH as a wearable sensor enables human health monitoring with high sensitivity and a low detection limit (12 Pa). Furthermore, based on pressure mapping image recognition technology, an 8 × 8 pixelated M-OH-based sensing array can accurately identify different objects with a high accuracy of 97.54% under the assistance of a deep learning neural network (DNN). This work demonstrates excellent comprehensive performances of the ultrastretchable high-conductive M-OH in health monitoring and object recognition, which would further explore extensive potential application prospects in personal healthcare, human-machine interfaces, and artificial intelligence.

摘要

导电水凝胶作为可穿戴电子产品的有前途的候选材料,在健康监测、多功能电子皮肤和人机界面方面引起了相当大的兴趣。然而,要同时实现导电水凝胶优异的电学性能、卓越的拉伸性和低检测阈值仍然是一个巨大的挑战。在此,开发了一种用于人体健康监测和机器学习辅助目标识别的超拉伸高导电性基于MXene的有机水凝胶(M-OH),它是通过在甘油/水二元溶剂中采用简便的浸渍策略,基于TiCT MXene/锂盐(LS)/聚(丙烯酰胺)(PAM)/聚(乙烯醇)(PVA)水凝胶制备而成。所制备的M-OH由于MXene与双网络PVA/PAM水凝胶基质之间的强相互作用以及MXene与LS之间的结合,分别表现出显著的拉伸性(2000%)和高导电性(4.5 S/m)。同时,M-OH作为可穿戴传感器能够以高灵敏度和低检测限(12 Pa)进行人体健康监测。此外,基于压力映射图像识别技术,一个8×8像素的基于M-OH的传感阵列在深度学习神经网络(DNN)的辅助下,能够以97.54%的高精度准确识别不同物体。这项工作展示了超拉伸高导电性M-OH在健康监测和目标识别方面的优异综合性能,这将进一步探索其在个人医疗保健、人机界面和人工智能等领域广泛的潜在应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验