Iravani Siavash, Khosravi Arezoo, Nazarzadeh Zare Ehsan, Varma Rajender S, Zarrabi Ali, Makvandi Pooyan
Independent Researcher W Nazar ST, Boostan Ave Isfahan Iran
Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University Istanbul 34959 Turkiye.
RSC Adv. 2024 Nov 21;14(49):36835-36851. doi: 10.1039/d4ra06384h. eCollection 2024 Nov 11.
This review explores the synergistic relationship between MXenes and artificial intelligence (AI), highlighting recent advancements in predicting and optimizing the properties, synthesis routes, and diverse applications of MXenes and their composites. MXenes possess fascinating characteristics that position them as promising candidates for a variety of technological applications, including energy storage, sensors/detectors, actuators, catalysis, and neuromorphic systems. The integration of AI methodologies provides a robust toolkit to tackle the complexities inherent in MXene research, facilitating property predictions and innovative applications. We discuss the challenges associated with the predictive capabilities for novel properties of MXenes and emphasize the necessity for sophisticated AI models to unravel the intricate relationships between structural features and material behaviors. Moreover, we examine the optimization of synthesis routes for MXenes through AI-driven approaches, underscoring the potential for streamlining and enhancing synthesis processes data-driven insights. Furthermore, the role of AI is elucidated in enabling targeted applications of MXenes across multiple domains, illustrating the correlations between MXene properties and application performance. The synergistic integration of MXenes and AI marks the dawn of a new era in material design and innovation, with profound implications for advancing diverse technological frontiers.
本综述探讨了MXenes与人工智能(AI)之间的协同关系,重点介绍了在预测和优化MXenes及其复合材料的性能、合成路线和各种应用方面的最新进展。MXenes具有引人入胜的特性,使其成为包括能量存储、传感器/探测器、致动器、催化和神经形态系统在内的各种技术应用的有前途的候选材料。人工智能方法的整合提供了一个强大的工具包,以应对MXene研究中固有的复杂性,促进性能预测和创新应用。我们讨论了与MXenes新特性预测能力相关的挑战,并强调需要复杂的人工智能模型来揭示结构特征与材料行为之间的复杂关系。此外,我们研究了通过人工智能驱动的方法对MXenes合成路线的优化,强调了通过数据驱动的见解简化和增强合成过程的潜力。此外,还阐明了人工智能在实现MXenes在多个领域的靶向应用中的作用,说明了MXene性能与应用性能之间的相关性。MXenes与人工智能的协同整合标志着材料设计和创新新时代的曙光,对推动各种技术前沿具有深远意义。