Suppr超能文献

三维药效团特征敏感编码。

3D-Sensitive Encoding of Pharmacophore Features.

机构信息

Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan.

出版信息

J Chem Inf Model. 2023 Apr 24;63(8):2360-2369. doi: 10.1021/acs.jcim.2c01623. Epub 2023 Apr 10.

Abstract

In the presence of structural data, one sometimes need to compare 3D ligands. We design an overlay-free method to rank order 3D molecules in the pharmacophore feature space. The proposed encoding includes only two fittable parameters, is sparse, and is not too high dimensional. At the cost of an additional parameter, to delineate the binding site from a protein-ligand complex, the method can compare binding sites. The method was benchmarked on the LIT-PCBA data set for ligand-based virtual screening experiments and the sc-PDB and a Vertex data set when comparing binding sites. In similarity searches, the proposed method outperforms an open-source software doing optimal superposition of ligand-based pharmacophores and RDKit's 3D pharmacophore fingerprints. When comparing binding sites, the method is competitive with state of the art approaches. On a single CPU core, up to 374,000 ligand/s or 132,000 binding site/s can be rank ordered. The "AutoCorrelation of Pharmacophore Features" open-source software is released at https://github.com/tsudalab/ACP4.

摘要

在存在结构数据的情况下,有时需要比较 3D 配体。我们设计了一种无叠加的方法,以便在药效特征空间中对 3D 分子进行排序。所提出的编码仅包含两个可拟合参数,稀疏且维度不太高。通过增加一个参数,可以从蛋白质-配体复合物中划分出结合位点,从而可以比较结合位点。该方法在基于配体的虚拟筛选实验的 LIT-PCBA 数据集以及 sc-PDB 和 Vertex 数据集上进行了基准测试,用于比较结合位点。在相似性搜索中,所提出的方法优于进行基于配体药效团最佳叠加的开源软件和 RDKit 的 3D 药效团指纹。在比较结合位点时,该方法具有竞争力。在单个 CPU 核上,最多可以对 374,000 个配体/s 或 132,000 个结合位点/s 进行排序。“药效团特征的自相关”开源软件已发布在 https://github.com/tsudalab/ACP4。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验