Kumar Sivakumar Prasanth, Dixit Nandan Y, Patel Chirag N, Rawal Rakesh M, Pandya Himanshu A
Institute of Defence Studies and Research, Gujarat University, Ahmedabad, India.
Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India.
J Comput Chem. 2022 May 5;43(12):847-863. doi: 10.1002/jcc.26840. Epub 2022 Mar 18.
Structure-based pharmacophore models are often developed by selecting a single protein-ligand complex with good resolution and better binding affinity data which prevents the analysis of other structures having a similar potential to act as better templates. PharmRF is a pharmacophore-based scoring function for selecting the best crystal structures with the potential to attain high enrichment rates in pharmacophore-based virtual screening prospectively. The PharmRF scoring function is trained and tested on the PDBbind v2018 protein-ligand complex dataset and employs a random forest regressor to correlate protein pocket descriptors and ligand pharmacophoric elements with binding affinity. PharmRF score represents the calculated binding affinity which identifies high-affinity ligands by thorough pruning of all the PDB entries available for a particular protein of interest with a high PharmRF score. Ligands with high PharmRF scores can provide a better basis for structure-based pharmacophore enumerations with a better enrichment rate. Evaluated on 10 protein-ligand systems of the DUD-E dataset, PharmRF achieved superior performance (average success rate: 77.61%, median success rate: 87.16%) than Vina docking score (75.47%, 79.39%). PharmRF was further evaluated using the CASF-2016 benchmark set yielding a moderate correlation of 0.591 with experimental binding affinity, similar in performance to 25 scoring functions tested on this dataset. Independent assessment of PharmRF on 8 protein-ligand systems of LIT-PCBA dataset exhibited average and median success rates of 57.55% and 74.72% with 4 targets attaining success rate > 90%. The PharmRF scoring model, scripts, and related resources can be accessed at https://github.com/Prasanth-Kumar87/PharmRF.
基于结构的药效团模型通常是通过选择一个具有良好分辨率和更好结合亲和力数据的单一蛋白质-配体复合物来开发的,这就阻碍了对其他具有类似潜力可作为更好模板的结构进行分析。PharmRF是一种基于药效团的评分函数,用于前瞻性地选择在基于药效团的虚拟筛选中具有获得高富集率潜力的最佳晶体结构。PharmRF评分函数在PDBbind v2018蛋白质-配体复合物数据集上进行训练和测试,并采用随机森林回归器将蛋白质口袋描述符和配体药效团元素与结合亲和力相关联。PharmRF分数代表计算出的结合亲和力,它通过对具有高PharmRF分数的特定目标蛋白质的所有可用PDB条目进行全面筛选来识别高亲和力配体。具有高PharmRF分数的配体可以为基于结构的药效团枚举提供更好的基础,富集率更高。在DUD-E数据集的10个蛋白质-配体系统上进行评估时,PharmRF的表现优于Vina对接分数(平均成功率:77.61%,中位数成功率:87.16%)(75.47%,79.39%)。使用CASF-2016基准集对PharmRF进行进一步评估,其与实验结合亲和力的适度相关性为0.591,性能与在该数据集上测试的25个评分函数相似。在LIT-PCBA数据集的8个蛋白质-配体系统上对PharmRF进行独立评估,平均成功率和中位数成功率分别为57.55%和74.72%,4个靶点的成功率超过90%。可以在https://github.com/Prasanth-Kumar87/PharmRF上访问PharmRF评分模型、脚本和相关资源。