Suppr超能文献

用于少样本人类-物体交互识别的语义感知动态生成网络

Semantic-Aware Dynamic Generation Networks for Few-Shot Human-Object Interaction Recognition.

作者信息

Ji Zhong, An Ping, Liu Xiyao, Gao Changxin, Pang Yanwei, Shao Ling

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12564-12575. doi: 10.1109/TNNLS.2023.3263660. Epub 2024 Sep 3.

Abstract

Recognizing human-object interaction (HOI) aims at inferring various relationships between actions and objects. Although great progress in HOI has been made, the long-tail problem and combinatorial explosion problem are still practical challenges. To this end, we formulate HOI as a few-shot task to tackle both challenges and design a novel dynamic generation method to address this task. The proposed approach is called semantic-aware dynamic generation networks (SADG-Nets). Specifically, SADG-Net first assigns semantic-aware task representations for different batches of data, which further generates dynamic parameters. It obtains the features that highlight intercategory discriminability and intracategory commonality adaptively. In addition, we also design a dual semantic-aware encoder module (DSAE-Module), that is, verb-aware and noun-aware branches, to yield both action and object prototypes of HOI for each task space, which generalizes to novel combinations by transferring similarities among interactions. Extensive experimental results on two benchmark datasets, that is, humans interacting with common objects (HICO)-FS and trento universal HOI (TUHOI)-FS, illustrate that our SADG-Net achieves superior performance over state-of-the-art approaches, which proves its impressive effectiveness on few-shot HOI recognition.

摘要

识别人类与物体的交互(HOI)旨在推断动作与物体之间的各种关系。尽管在HOI方面已经取得了很大进展,但长尾问题和组合爆炸问题仍然是实际存在的挑战。为此,我们将HOI表述为一个少样本任务来应对这两个挑战,并设计了一种新颖的动态生成方法来处理该任务。所提出的方法称为语义感知动态生成网络(SADG-Nets)。具体而言,SADG-Net首先为不同批次的数据分配语义感知任务表示,进而生成动态参数。它自适应地获得突出类别间可区分性和类别内共性的特征。此外,我们还设计了一个双语义感知编码器模块(DSAE-Module),即动词感知和名词感知分支,为每个任务空间生成HOI的动作和物体原型,通过在交互之间传递相似性将其推广到新的组合。在两个基准数据集上的大量实验结果,即人类与常见物体交互(HICO)-FS和特伦托通用HOI(TUHOI)-FS,表明我们的SADG-Net比现有方法具有更优的性能,这证明了其在少样本HOI识别方面令人印象深刻的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验