Suppr超能文献

基于极端梯度提升算法在不同热解条件下预测生物油含氧组分含量

Machine learning prediction of contents of oxygenated components in bio-oil using extreme gradient boosting method under different pyrolysis conditions.

机构信息

National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China.

National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China.

出版信息

Bioresour Technol. 2023 Jul;379:129040. doi: 10.1016/j.biortech.2023.129040. Epub 2023 Apr 8.

Abstract

This work aims to develop a prediction model for the contents of oxygenated components in bio-oil based on machine learning according to different pyrolysis conditions and biomass characteristics. The prediction model was constructed using the extreme gradient boosting (XGB) method, and the prediction accuracy was evaluated using the test dataset. The partial dependence analysis (PDA) method was used to derive the pattern of influence of each input feature individually or in combination on the output variable. The results show that the prediction models constructed from biomass ultimate analysis and pyrolysis conditions can predict the contents of oxygenated components in bio-oil more accurately than the models constructed from biomass proximate analysis. Moderate C and O contents, higher H content of biomass, lower flow rate, and higher pyrolysis temperature can improve bio-oil quality.

摘要

本工作旨在根据不同的热解条件和生物质特性,利用机器学习为基于生物质的含氧成分在生物油中的含量开发预测模型。该预测模型是使用极端梯度提升 (XGB) 方法构建的,并使用测试数据集评估了预测准确性。偏依赖分析 (PDA) 方法用于推导出每个输入特征单独或组合对输出变量的影响模式。结果表明,基于生物质的最终分析和热解条件构建的预测模型比基于生物质的近似分析构建的预测模型能够更准确地预测生物油中含氧成分的含量。生物质具有中等的 C 和 O 含量、较高的 H 含量、较低的流速和较高的热解温度可以提高生物油的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验