Suppr超能文献

使用带有加速失效时间模型的纵向等级和生存时间数据的部分线性贝叶斯建模及其在脑肿瘤数据中的应用。

Partially linear Bayesian modeling of longitudinal rank and time-to-event data using accelerated failure time model with application to brain tumor data.

机构信息

Department of Statistics, Faculty of Mathematical Science, Shahid Beheshti University, Evin, Iran.

Neurosurgery Department, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Stat Med. 2023 Jun 30;42(14):2521-2556. doi: 10.1002/sim.9735. Epub 2023 Apr 10.

Abstract

Joint modeling of longitudinal rank and time-to-event data with random effects model using a Bayesian approach is presented. Accelerated failure time (AFT) models can be used for the analysis of time-to-event data to estimate the effects of covariates on acceleration/deceleration of the survival time. The parametric AFT models require determining the event time distribution. So, we suppose that the time variable is modeled with Weibull AFT distribution. In many real-life applications, it is difficult to determine the appropriate distribution. To avoid this restriction, several semiparametric AFT models were proposed, containing spline-based model. So, we propose a flexible extension of the accelerated failure time model. Furthermore, the usual joint linear model, a joint partially linear model, is also considered containing the nonlinear effect of time on the longitudinal rank responses and nonlinear and time-dependent effects of covariates on the hazard. Also, a Bayesian approach that yields Bayesian estimates of the model's parameters is used. Some simulation studies are conducted to estimate parameters of the considered models. The model is applied to a real brain tumor patient's data set that underwent surgery. The results of analyzing data are presented to represent the method.

摘要

本文提出了一种使用贝叶斯方法对纵向等级和事件时间数据进行联合建模的方法,其中包括随机效应模型。加速失效时间 (AFT) 模型可用于分析事件时间数据,以估计协变量对生存时间加速/减速的影响。参数 AFT 模型需要确定事件时间分布。因此,我们假设时间变量采用威布尔 AFT 分布进行建模。在许多实际应用中,很难确定适当的分布。为了避免这种限制,提出了几种半参数 AFT 模型,其中包含基于样条的模型。因此,我们提出了一种灵活的加速失效时间模型的扩展。此外,还考虑了常用的联合线性模型和联合部分线性模型,其中包含时间对纵向等级响应的非线性效应以及协变量对风险的非线性和时变效应。还使用了一种产生模型参数的贝叶斯估计的贝叶斯方法。进行了一些模拟研究来估计所考虑模型的参数。该模型应用于接受手术的真实脑肿瘤患者数据集。分析数据的结果用于表示该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验