School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
J Mol Cell Biol. 2023 Aug 3;15(4). doi: 10.1093/jmcb/mjad023.
DNA methylation analysis has been applied to determine the primary site of cancer; however, robust and accurate prediction of cancer types with a minimum number of sites is still a significant scientific challenge. To build an accurate and robust cancer type prediction tool with a minimum number of DNA methylation sites, we internally benchmarked different DNA methylation site selection and ranking procedures, as well as different classification models. We used The Cancer Genome Atlas dataset (26 cancer types with 8296 samples) to train and test models and used an independent dataset (17 cancer types with 2738 samples) for model validation. A deep neural network model using a combined feature selection procedure (named MethyDeep) can predict 26 cancer types using 30 methylation sites with superior performance compared with the known methods for both primary and metastatic cancers in independent validation datasets. In conclusion, MethyDeep is an accurate and robust cancer type predictor with the minimum number of DNA methylation sites; it could help the cost-effective clarification of cancer of unknown primary patients and the liquid biopsy-based early screening of cancers.
DNA 甲基化分析已被应用于确定癌症的原发部位;然而,用尽可能少的检测点来准确且稳健地预测癌症类型仍然是一个重大的科学挑战。为了构建一个具有最小数量的 DNA 甲基化检测点的准确且稳健的癌症类型预测工具,我们在内部对不同的 DNA 甲基化检测点选择和排序程序以及不同的分类模型进行了基准测试。我们使用了癌症基因组图谱数据集(26 种癌症类型,8296 个样本)来训练和测试模型,并使用了一个独立的数据集(17 种癌症类型,2738 个样本)来进行模型验证。使用联合特征选择程序的深度神经网络模型(名为 MethyDeep)可以使用 30 个甲基化检测点预测 26 种癌症类型,与独立验证数据集中用于原发和转移性癌症的已知方法相比,具有优越的性能。总之,MethyDeep 是一种具有最小数量的 DNA 甲基化检测点的准确且稳健的癌症类型预测工具;它可以帮助以具有成本效益的方式明确不明原发灶癌症患者的癌症类型,并基于液体活检进行癌症的早期筛查。