Suppr超能文献

细胞内噬菌体尾样纳米结构影响变铅青链霉菌对渗透胁迫的敏感性。

Intracellular Phage Tail-Like Nanostructures Affect Susceptibility of Streptomyces lividans to Osmotic Stress.

机构信息

Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan.

Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan.

出版信息

mSphere. 2023 Jun 22;8(3):e0011423. doi: 10.1128/msphere.00114-23. Epub 2023 Apr 11.

Abstract

Contractile injection systems (CISs) are a large group of phage tail-like nanostructures conserved among bacteria. Despite their wide distribution, the biological significance of CISs in bacteria remains largely unclear except for a few unicellular bacteria. Here, we show that Streptomyces lividans-a model organism of filamentous Gram-positive bacteria with highly conserved CIS-related gene clusters-produces intracellular CIS-like nanostructures ( phage tail-like particles [SLPs]) that affect phenotypes of this bacterium under hyperosmotic conditions. In contrast to typical CISs released from the cells, SLPs are localized in the cytoplasm of S. lividans. In addition, loss of SLPs leads to (i) delayed erection of aerial mycelia on hyperosmotic solid medium and (ii) decreased growth during the transition from exponential growth phase to stationary phase in hyperosmotic liquid medium. Localization of fluorescent protein-tagged SLPs showed partial correlation with cell wall synthesis-related proteins, including MreB, an actin-like cytoskeleton protein. Our pulldown assay and subsequent quantitative proteome analysis also suggest that 30S ribosomal proteins and cell wall-related proteins, including MreB, are coeluted with SLPs. Furthermore, an interaction assay using the recombinant proteins revealed a direct interaction between a sheath protein of SLP and ribosomal protein S16. Results of cross-linking experiments show indirect interactions between SLPs and translation elongation factors. These findings collectively suggest that SLPs are directly or indirectly associated with a protein interaction network within the cytoplasm of S. lividans and that SLP loss ultimately affects the susceptibility of the bacterium to certain stress conditions. Recent bioinformatic analyses have revealed that CIS-related gene clusters are highly conserved in Gram-positive actinomycetes, especially members of the genus known for their ability to produce therapeutic antibiotics. While typical CISs are released from the cells and can act as protein translocation systems that inject effector proteins into the target cells, our results indicate the unique intracellular localization of SLPs, CIS-related nanostructures produced by S. lividans. In addition, the direct and indirect interactions of SLPs with cytoplasmic proteins and SLP localization within specific regions of mycelia suggest that the biological significance of SLPs is related to intracellular processes. Further, SLP loss leads to increased susceptibility of S. lividans to osmotic stress, suggesting that production of these phage tail-like nanostructures ultimately affects the fitness of the bacterium under certain stress conditions. This work will provide new insight into the phage tail-like nanostructures highly conserved in species.

摘要

收缩注射系统 (CISs) 是一类广泛存在于细菌中的噬菌体尾部样纳米结构。尽管它们分布广泛,但 CISs 在细菌中的生物学意义除了少数单细胞细菌外,仍基本不清楚。在这里,我们展示了链霉菌-一种具有高度保守 CIS 相关基因簇的丝状革兰氏阳性细菌的模式生物-产生细胞内 CIS 样纳米结构(噬菌体尾部样颗粒 [SLP]),这些结构在高渗条件下影响该细菌的表型。与从细胞中释放的典型 CIS 不同,SLP 定位于链霉菌的细胞质中。此外,SLP 的缺失导致(i)在高渗固体培养基上空气菌丝的延迟竖立和(ii)在高渗液体培养基中从指数生长阶段到静止阶段的过渡期间生长减少。荧光蛋白标记的 SLP 的定位显示与细胞壁合成相关蛋白(包括肌动蛋白样细胞骨架蛋白 MreB)有部分相关性。我们的下拉测定和随后的定量蛋白质组学分析还表明,30S 核糖体蛋白和细胞壁相关蛋白,包括 MreB,与 SLP 共洗脱。此外,使用重组蛋白的相互作用测定表明 SLP 的鞘蛋白与核糖体蛋白 S16 之间存在直接相互作用。交联实验的结果表明 SLP 与翻译延伸因子之间存在间接相互作用。这些发现共同表明 SLP 直接或间接地与链霉菌细胞质内的蛋白质相互作用网络相关联,并且 SLP 的缺失最终影响细菌对某些应激条件的敏感性。最近的生物信息学分析表明,CIS 相关基因簇在革兰氏阳性放线菌中高度保守,特别是以产生治疗性抗生素而闻名的属成员。虽然典型的 CIS 从细胞中释放出来,并可以作为将效应蛋白注入靶细胞的蛋白转位系统,但我们的结果表明 SLP 是由链霉菌产生的独特的细胞内定位的 CIS 相关纳米结构。此外,SLP 与细胞质蛋白的直接和间接相互作用以及 SLP 在菌丝体特定区域的定位表明,SLP 的生物学意义与细胞内过程有关。此外,SLP 的缺失导致链霉菌对渗透压胁迫的敏感性增加,这表明这些噬菌体尾部样纳米结构的产生最终会影响细菌在某些胁迫条件下的适应性。这项工作将为高度保守的噬菌体尾部样纳米结构提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验